Population

Growth

Ecological Models

- aim: to simulate (predict) what can happen
- model is tested by comparison with observed data
- realistic models - complex (many parameters), realistic, used to simulate real situations
- strategic models - simple (few parameters), unrealistic, used for understanding the model behaviour
- a model should be:

1. a satisfactory description of diverse systems
2. an aid to enlighten aspects of population dynamics
3. a system that can be incorporated into more complex models

- deterministic models - everything is predictable
- stochastic models - including random events
- discrete models:
- time is composed of discrete intervals or measured in generations
- used for populations with synchronised reproduction (annual species)
- modelled by difference equations
- continuous models:
- time is continual (very short intervals) thus change is instantaneous
- used for populations with asynchronous and continuous overlapping reproduction
- modelled by differential equations

STABILITY \& EQUILIBRUM

- how population changes in time
- stable equilibrium is a state (population density) to which a population will move after a perturbation

Population processes

- focus on rates of population processes
- number of cockroaches in a living room increases:
- influx of cockroaches from adjoining rooms $\rightarrow \underline{\text { immigration }[I]}$
- cockroaches were born $\rightarrow \underline{\text { birth }}[\boldsymbol{B}]$
- number of cockroaches declines:
- dispersal of cockroaches \rightarrow emigration $[\boldsymbol{E}]$
- cockroaches died \rightarrow death $[\boldsymbol{D}]$

$$
N_{t+1}=N_{t}+I+B-D-E
$$

Blatta orientalis

- population increases if $I+B>E+D$
- rate of increase is a summary of all events $(I+B-E-D)$
- growth models are based on \boldsymbol{B} and \boldsymbol{D}
- spatial models are based on \boldsymbol{I} and \boldsymbol{E}

Density-independent population increase

Population processes are independent of its density

Assumptions:

- immigration and emigration are none or ignored
- all individuals are identical
- natality and mortality are constant
- all individuals are genetically similar
- reproduction is asexual
- population structure is ignored
- resources are infinite
- population change is instant, no lags

Used only for

- relative short time periods
- closed and homogeneous environments (experimental chambers)

Discrete (difference) model

- for population with discrete generations (annual reproduction), no generation overlap
- time (t) is discrete, equivalent to generation
- exponential (geometric) growth
- Malthus (1834) realised that any species can potentially increase in numbers according to a geometric series
N_{0}.. initial density
b.. birth rate (per capita) d.. death rate (per capita)

$$
b=\frac{B}{N} \quad d=\frac{D}{N}
$$

$$
\begin{aligned}
\Delta N & =b N_{t-1}-d N_{t-1} \\
N_{t}-N_{t-1} & =(b-d) N_{t-1} \\
N_{t} & =(1+b-d) N_{t-1}
\end{aligned}
$$

$$
\begin{aligned}
1+b-d=\lambda & b-d=R \\
& \lambda=1+R
\end{aligned}
$$

R.. demographic growth rate

- shows proportional change (in percentage)
λ.. finite growth rate, per capita rate of growth
$\lambda=1.23$ then $R=0.23$
.. 23% increase
- number of individuals is multiplied each time - the larger the population the larger the increase
- if λ is constant, population number in generations \boldsymbol{t} is equal to

$$
\begin{gathered}
N_{t}=N_{t-1} \lambda \\
N_{2}=N_{1} \lambda=N_{0} \lambda \lambda
\end{gathered}
$$

$$
N_{t}=N_{0} \lambda^{t}
$$

Average of finite growth rates

- estimated as geometric mean

$$
\bar{\lambda}=\left(\prod_{i=1}^{t} \lambda_{i}\right)^{\frac{1}{t}}=\left(\lambda_{1} \lambda_{2} \ldots \lambda_{t}\right)^{\frac{1}{t}}
$$

Continuous (differential) model

populations that are continuously reproducing, with overlapping

generations

- when change in population number is permanent
- derived from the discrete model

$$
\begin{gathered}
N_{t}=N_{0} \lambda^{t} \\
\ln \left(N_{t}\right)=\ln \left(N_{0}\right)+t \ln (\lambda) \\
\ln \left(N_{t}\right)-\ln \left(N_{0}\right)=t \ln (\lambda) \\
\frac{\ln (N)}{t}=\ln (\lambda) \\
\frac{\mathrm{d} N}{\mathrm{~d} t} \frac{1}{N}=\ln (\lambda) \\
\frac{\mathrm{d} N}{\mathrm{~d} t}=N \ln (\lambda)
\end{gathered}
$$

Comparison of discrete and continuous generations

$$
\text { if } \quad r=\ln (\lambda)
$$

r.. intrinsic rate of natural increase, instantaneous per capita growth rate

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=N r
$$

Solution of the differential equation:

- analytical or numerical
- at each point it is possible to determine the rate of change by differentiation (slope of the tangent)
- when t is large it is approximated by the exponential function

$$
\begin{gathered}
\frac{\mathrm{d} N}{\mathrm{~d} t}=N r \\
\frac{\mathrm{~d} N}{\mathrm{~d} t} \frac{1}{N}=r \\
\int_{0}^{T} \frac{1}{N} \mathrm{~d} N=\int_{0}^{T} r \mathrm{~d} t
\end{gathered}
$$

$$
\ln \left(N_{T}\right)-\ln \left(N_{0}\right)=r(T-0)
$$

$$
\begin{gathered}
\ln \left(\frac{N_{T}}{N_{0}}\right)=r T \\
\frac{N_{T}}{N_{0}}=e^{r T} \\
N_{t}=N_{0} e^{r t}
\end{gathered}
$$

- doubling time: time required for a population to double

$$
t=\frac{\ln (2)}{r}
$$

r versus λ

$$
N_{t}=N_{0} \lambda^{t} \quad N_{t}=N_{0} e^{r t}
$$

$$
\lambda^{t}=e^{r t}
$$

$$
r=\ln (\lambda)
$$

- r is symmetric around $0, \lambda$ is not

$$
\begin{gathered}
r=0.5 \ldots \lambda=1.65 \\
r=-0.5 \ldots \lambda=0.61
\end{gathered}
$$

