

Population Structure

"Populační ekologie živočichů"

Stano Pekár

Demography

- study of organisms with special attention to stage or age structure
- processes are associated to age, stage or size
- fecundity is dependent on age (e.g., mammals), stage (e.g., insects) or size (e.g., fish)

Four concepts:

- 1. Every population has a structure individuals in each class have similar rate of reproduction and mortality
- 2. Every population has a specific intrinsic rate of increase

3. Every population has specific mortality

x .. age/stage/size category

 p_x ... age/stage/size specific survival

4. Every population has a specific reproductive rate

 m_x .. reproductive rate (expected average number of offspring per female)

- main focus on births and deaths
 immigration & emigration is
 ignored
- no adult survive
- one (not overlapping)

generation per year

- egg pods over-winter
- despite high fecundity they just
 replace themselves

Richards & Waloff (1954)

 breed at discrete periods

 no overlapping generations

Biennal species

- breed at discrete periods
- adult generation may overlap

Perennial species

- breed at discrete periods
- breeding adults consist of
- individuals of various ages (1-5 years)
 - adults of different generations are

equivalent

overlapping generations

Age-size-stage life-table

age/stage
 classification is based
 on developmental time

 size may be more appropriate than age (fish, sedentary animals)

 Hughes (1984) used combination of age/stage and size for the description of coral growth Agaricia agaricites

Age-dependent life-tables

show organisms' mortality and reproduction as a function of age

Cohort (horizontal) life-table

- examination of a population in a cohort = a group of individuals born at the same period
- followed from birth to death
- provide reliable information
- designed for short-lived organisms
- only females are included

S_x .. number of survivors

D_x .. number of dead individuals

$$D_x = S_x - S_{x+1}$$

 l_x .. standardised number of survivors

1	_	S_x
<i>x</i>	_	S_0

X	Sx	Dx	Ix	рх	qx	mx
0	250	50	1.000	0.800	0.200	0.000
1	200	120	0.800	0.400	0.600	0.000
2	80	50	0.320	0.375	0.625	2.000
3	30	15	0.120	0.500	0.500	2.100
4	15	9	0.060	0.400	0.600	2.300
5	6	6	0.024	0.000	1.000	2.400
6	0	0	0.000			

 q_x ... age-specific mortality

$$q_x = \frac{D_x}{S_x}$$

 p_x ... age-specific survival

$$p_x = \frac{l_{x+1}}{l_x}$$

vulpes vulpes

Static (vertical) life-tables

examination of a population during one segment (time interval)
segment = group of individuals of different cohorts

- designed for long-lived organisms

► ASSUMPTIONS:

- Birth rate and survival are constant over time
- population does not grow
- proportions of age classes in a sample corresponds to the real state

• DRAWBACKS: confuses age-specific changes in e.g. mortality with temporal variation

X	Sx	Dx	Ix	рх	qx	mx
1	129	15	1.000	0.884	0.116	0.000
2	114	1	0.884	0.991	0.009	0.000
3	113	32	0.876	0.717	0.283	0.310
4	81	3	0.628	0.963	0.037	0.280
5	78	19	0.605	0.756	0.244	0.300
6	59	-6	0.457	1.102	-0.102	0.400
7	65	10	0.504	0.846	0.154	0.480
8	55	30	0.426	0.455	0.545	0.360
9	25	16	0.194	0.360	0.640	0.450
10	9	1	0.070	0.889	0.111	0.290
11	8	1	0.062	0.875	0.125	0.280
12	7	5	0.054	0.286	0.714	0.290
13	2	1	0.016	0.500	0.500	0.280
14	1	-3	0.008	4.000	-3.000	0.280
15	4	2	0.031	0.500	0.500	0.290
16	2	2	0.016	0.000	1.000	0.280

Lowe (1969)

Cervus elaphus

Stage or size-dependent life-tables

- survival and reproduction depend on stage / size rather than age
- age-distribution is of no interest
- used for invertebrates (insects, invertebrates)
- time spent in a stage / size can differ

X	Sx	Dx	Ix	рх	qx	mx
Egg	450	68	1.000	0.849	0.151	0
Larva I	382	67	0.849	0.825	0.175	0
Larva II	315	158	0.700	0.498	0.502	0
Larva III	157	118	0.349	0.248	0.752	0
Larva IV	39	7	0.087	0.821	0.179	0
Larva V	32	9	0.071	0.719	0.281	0
Larva VI	23	1	0.051	0.957	0.043	0
Pre-pupa	22	4	0.049	0.818	0.182	0
Pupa	18	2	0.040	0.889	0.111	0
Adult	16	16	0.036	0.000	1.000	185

Campbell (1981)

Lymantria dispar

Survivorship curves

- display change in survival by plotting $log(l_x)$ against age (x)
- sheep mortality increases with age
- survivorship of lapwing (Vanellus) is independent of age but survival of sheep is age-dependent

Pearls (1928) classified hypothetical age-specific mortality:

- > Type I .. mortality is concentrated at the end of life span (humans)
- Type II .. mortality is constant over age (seeds, birds)
- Type III .. mortality is highest in the beginning of life (invertebrates, fish, reptiles)

- Sum of intrinsic and extrinsic mortality

Birth rate curves

- fecundity potential number of offspring
- fertility real number of offspring
- semelparous .. reproducing once a life
- iteroparous .. reproducing several times during life
- birth pulse .. discrete reproduction
 (seasonal reproduction)
- birth flow .. continuous reproduction

Key-factor analysis

k-value - killing power - another measure of mortality

$$k = -\ln(p)$$

k-values are additive unlike q

$$K = \sum k_x$$

• Key-factor analysis - a method to identify the most important factors that regulates population dynamics

k-values are estimated for a number of years

• important factors are identified by regressing k_x on log(N)

Leptinotarsa decemlineata

• over-wintering adults emerge in June \rightarrow eggs are laid in

clusters on the lower side of leafs \rightarrow larvae pass through 4 instars

- \rightarrow form pupal cells in the soil \rightarrow summer adults emerge in August
- \rightarrow begin to hibernate in September
- mortality factors overlap

Harcourt (1971)

Age interval	Numbers per 96 potato hills	Numbers 'dying'	'Mortality factor'	log ₁₀ N	k-value	
Eggs Early larvae Late larvae Pupal cells Summer adults Female × 2 Hibernating adults Spring adults	11 799 9268 8823 8415 7268 6892 6892 3170 3154 3280 16 14	2531 445 408 1147 376 0 3722 16 - 126 3264 2	Not deposited Infertile Rainfall Cannibalism Predators Rainfall Starvation D. doryphorae Sex (52% female) Emigration Frost	4.072 3.967 3.946 3.925 3.861 3.838 3.838 3.501 3.499 3.516 1.204 1.146	0.105 0.021 0.021 0.064 0.024 0 0.337 0.002 -0.017 2.312 0.058 2.926	$(k_{1a}) (k_{1b}) (k_{1c}) (k_{1d}) (k_{1e}) (k_2) (k_2) (k_3) (k_4) (k_5) (k_6) (k_7) (k_{total})$

Summary over 10 years

highest k-value indicates the role of a factor in each generation
profile of a factor parallel with the *K* profile reveals the key factor

emigration is the key-factor