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+ +   .. mutualism (plants and pollinators) 

0 +   .. commensalism (saprophytism, parasitism, phoresis)  

-  +   .. predation (herbivory, parasitism), mimicry 

- 0    .. amensalism (allelopathy) 

-  -    .. competition 

Increase Neutral Decrease

Increase + +

Neutral 0 + 0 0

Decrease + - - 0 - -

Effect of species 1 on fitness of species 2 
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Niche breadth 

Levin’s index (D):  

- pk .. proportion of individuals in class k 

- does not include resource availability 

- 1 < D < ∞ 

Smith’s index (FT):  

- qk .. proportion of available individuals in class k 

- 0 < FT < 1 

 

Niche overlap 

Pianka’s index (a): 

- does not account for resource availability 

- 0 < a < 1 

Lloyd’s index (L): 

- 0 < L < ∞ 
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 based on the logistic differential model 

species 1: N1, K1, r1  

 

 

species 2: N2, K2, r2 
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assumptions: 

- all parameters are constant 

- individuals of the same species are identical 

- environment is homogenous, differentiation of niches is not possible 

- only exact compensation is present 

 

 model of Lotka (1925) and Volterra (1926) 



 total competitive effect (intra + inter-specific)  

  (N1+ N2)    where  .. coefficient of competition 

 = 0 .. no interspecific competition 

 < 1 .. species 2 has lower effect on species 1 than species 1 on itself  

 = 0.5 .. one individual of species 1 is equivalent to 0.5 individuals of 

species 2) 

 = 1 .. both species has equal effect on the other one 

 > 1 .. species 2 has greater effect on species 1 than species 1 on itself 

species 1: 

 

 

species 2: 

 if competing species use the same resource then interspecific 

competition is equal to intraspecific 
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 examination of the model behaviour using null isoclines 
 

 used to describe change in any two variables in coupled differential 

equations by projecting orthogonal vectors 
 

 identification of isoclines: a set of abundances for which the change 

in populations is 0: 
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 species 1  

 r1N1 (1 - [N1 + 12N2] / K1) = 0  

 r1N1 ([K1 - N1 - 12N2] / K1) = 0   

trivial solution if r1, N1, K1 = 0  

and  if  K1 - N1 - 12N2 = 0 

then N1 = K1 - 12N2  

 

if N1 = 0 then N2 = K1/12  

if N2 = 0 then N1 = K1 

 

 species 2  

 r2N2 (1 - [N2 + 21 N1] / K2) = 0  

 N2 = K2 - 21N1  

trivial solution if r2, N2, K2 = 0 
if N2 = 0 then N1 = K2/21  

if N1 = 0 then N2 = K2 

 

 above isocline i1 and below i2 competition is weak 

 in-between i1 and i2 competition is strong 
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1. Species 2 drives species 1 to extinction 

 K and  determine the model behaviour 

disregarding initial densities species 2 (stronger competitor) will 

outcompete species 1 (weaker competitor) 

 equilibrium (0, K2) 

K1 = K2  

12 > 21 
12

1
2



K
K 

21

2
1



K
K 

N1 

N2 

K2 

K1 

12

1



K

21

2



K

time 
0 

species 2 

species 1 

N 

K 

r1 = r2  
N01 = N02 



2. Species 1 drives species 2 to extinction 

species 1 (stronger competitor) will outcompete species 2 (weaker 

competitor) 

equilibrium (K1, 0) 
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3. Stable coexistence of species 

 disregarding initial densities both species will coexist at stable  

 equilibrium (where isoclines cross)  

 at at equilibrium population density of both species is reduced 

 both species are weak competitors 

 equilibrium (K1*, K2*) 
K1 = K2  

12, 21 < 1 
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one species will drive other to extinction 

depending on the initial conditions 

 coexistence only for a short time 

 both species are strong competitors 

equilibrium (K1, 0) or (0, K2)  

4. Competitive exclusion 

r1 = r2  

K1 = K2  
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Jacobian matrix of partial derivations for 2dimensional system 

 

 

 

 

 

 evaluation of the derivations for densities close to equilibrium 

estimate eigenvalues of the matrix (negative values indicate 

approach to equilibrium): 

- real parts of all eigenvalues < 0 .. globally stable 

- real part of some eigenvalues < 0 .. saddle stability 

- real part of all eigenvalues > 0 .. globally unstable 

- imaginary parts present .. oscillations 

- imaginary parts absent .. no oscillations 

 Lotka-Volterra system is stable for 1221 < 1 
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 when Rhizopertha and Oryzaephilus were reared separately both 

species increased to 420-450 individuals (= K) 
 

 when reared together Rhizopertha reached K1 = 360, while 

Oryzaephilus K2 = 150 individuals  
 

 combination resulted in more efficient conversion of grain (K12 = 510 

individuals) 
 

 three combinations of  

densities converged to the  

same stable equilibrium  
 

 prediction of  

Lotka-Volterra model is correct 
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Crombie (1947) 

equilibrium 
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dynamic (multiple) regression is used to estimate parameters from a 

series of abundances 

.. a, b, c – regression  

parameters 
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 solution of the differential model – Ricker’s model: 



 Facultative (able to exist independently) x obligatory mutualists 

 Vandermeer & Boucher (1978) 

 

 .. coefficient of mutalism 

 Outcome depends on the type of 

mutualism 
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