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dN 

= Nr 
dt 



+ +   .. mutualism (plants and pollinators) 

0 +   .. commensalism (saprophytism, parasitism, phoresis)  

-  +   .. predation (herbivory, parasitism), mimicry 

- 0    .. amensalism (allelopathy) 

-  -    .. competition 

Increase Neutral Decrease

Increase + +

Neutral 0 + 0 0

Decrease + - - 0 - -

Effect of species 1 on fitness of species 2 
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Niche breadth 

Levin’s index (D):  

- pk .. proportion of individuals in class k 

- does not include resource availability 

- 1 < D < ∞ 

Smith’s index (FT):  

- qk .. proportion of available individuals in class k 

- 0 < FT < 1 

 

Niche overlap 

Pianka’s index (a): 

- does not account for resource availability 

- 0 < a < 1 

Lloyd’s index (L): 

- 0 < L < ∞ 
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 based on the logistic differential model 

species 1: N1, K1, r1  

 

 

species 2: N2, K2, r2 
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assumptions: 

- all parameters are constant 

- individuals of the same species are identical 

- environment is homogenous, differentiation of niches is not possible 

- only exact compensation is present 

 

 model of Lotka (1925) and Volterra (1926) 



 total competitive effect (intra + inter-specific)  

  (N1+ N2)    where  .. coefficient of competition 

 = 0 .. no interspecific competition 

 < 1 .. species 2 has lower effect on species 1 than species 1 on itself  

 = 0.5 .. one individual of species 1 is equivalent to 0.5 individuals of 

species 2) 

 = 1 .. both species has equal effect on the other one 

 > 1 .. species 2 has greater effect on species 1 than species 1 on itself 

species 1: 

 

 

species 2: 

 if competing species use the same resource then interspecific 

competition is equal to intraspecific 
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 examination of the model behaviour using null isoclines 
 

 used to describe change in any two variables in coupled differential 

equations by projecting orthogonal vectors 
 

 identification of isoclines: a set of abundances for which the change 

in populations is 0: 
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 species 1  

 r1N1 (1 - [N1 + 12N2] / K1) = 0  

 r1N1 ([K1 - N1 - 12N2] / K1) = 0   

trivial solution if r1, N1, K1 = 0  

and  if  K1 - N1 - 12N2 = 0 

then N1 = K1 - 12N2  

 

if N1 = 0 then N2 = K1/12  

if N2 = 0 then N1 = K1 

 

 species 2  

 r2N2 (1 - [N2 + 21 N1] / K2) = 0  

 N2 = K2 - 21N1  

trivial solution if r2, N2, K2 = 0 
if N2 = 0 then N1 = K2/21  

if N1 = 0 then N2 = K2 

 

 above isocline i1 and below i2 competition is weak 

 in-between i1 and i2 competition is strong 
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1. Species 2 drives species 1 to extinction 

 K and  determine the model behaviour 

disregarding initial densities species 2 (stronger competitor) will 

outcompete species 1 (weaker competitor) 

 equilibrium (0, K2) 

K1 = K2  

12 > 21 
12

1
2



K
K 

21

2
1



K
K 

N1 

N2 

K2 

K1 

12

1



K

21

2



K

time 
0 

species 2 

species 1 

N 

K 

r1 = r2  
N01 = N02 



2. Species 1 drives species 2 to extinction 

species 1 (stronger competitor) will outcompete species 2 (weaker 

competitor) 

equilibrium (K1, 0) 
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3. Stable coexistence of species 

 disregarding initial densities both species will coexist at stable  

 equilibrium (where isoclines cross)  

 at at equilibrium population density of both species is reduced 

 both species are weak competitors 

 equilibrium (K1*, K2*) 
K1 = K2  

12, 21 < 1 
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one species will drive other to extinction 

depending on the initial conditions 

 coexistence only for a short time 

 both species are strong competitors 

equilibrium (K1, 0) or (0, K2)  

4. Competitive exclusion 

r1 = r2  

K1 = K2  
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Jacobian matrix of partial derivations for 2dimensional system 

 

 

 

 

 

 evaluation of the derivations for densities close to equilibrium 

estimate eigenvalues of the matrix (negative values indicate 

approach to equilibrium): 

- real parts of all eigenvalues < 0 .. globally stable 

- real part of some eigenvalues < 0 .. saddle stability 

- real part of all eigenvalues > 0 .. globally unstable 

- imaginary parts present .. oscillations 

- imaginary parts absent .. no oscillations 

 Lotka-Volterra system is stable for 1221 < 1 
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 when Rhizopertha and Oryzaephilus were reared separately both 

species increased to 420-450 individuals (= K) 
 

 when reared together Rhizopertha reached K1 = 360, while 

Oryzaephilus K2 = 150 individuals  
 

 combination resulted in more efficient conversion of grain (K12 = 510 

individuals) 
 

 three combinations of  

densities converged to the  

same stable equilibrium  
 

 prediction of  

Lotka-Volterra model is correct 
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1: N1 < N2 
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3: N1 > N2 

Crombie (1947) 

equilibrium 
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dynamic (multiple) regression is used to estimate parameters from a 

series of abundances 

.. a, b, c – regression  

parameters 
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 solution of the differential model – Ricker’s model: 



 Facultative (able to exist independently) x obligatory mutualists 

 Vandermeer & Boucher (1978) 

 

 .. coefficient of mutalism 

 Outcome depends on the type of 

mutualism 
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Facultative mutualists 


