GENETIC AND PHENOTYPIC VARIATION

Evolution as a two-stage process:

- 1. variation among individuals in a population
- 2. changes in the proportion of variants from generation to generation

The increase in mean fitness due to natural selection is proportional to the additive genetic variance in fitness.

R.A. Fisher

1 Selffertilization

F. Galton

Continuous And Discontinuous Variation

CVHS GCSE POWERPOINT SHARE

Biometricians: continual variation

many genes

often strong influence of environment

Sources of phenotypic variation:

differences in <u>genotype</u> differences in <u>environmental conditions</u> <u>maternal</u> influences (paternal influences)

Paradox:

for evolutionary biologists important to study phenotypes for geneticists easier to directly study molecules

Reginald C. Punnett: brachydactyly

Why don t we observe the 3:1 ratio in *populations*?

gene ... till now difficult to define/delimit locus ... here = gene or any other molecular trait

alleles = alternative forms of genes (now broader meaning – segment of DNA)

genome = set of all genes of an individual (nuclear, mitochondrial...)

genotype = set of alelles of one or more genes of an individual

haplotype (haploid genotype) = combination of alelles inherited together

Genotype and allele frequencies

Frequencies: genotype: $P(f_{AA})$, $Q(f_{Aa})$, $R(f_{aa})$ allele (gene): p(A), q(a)

$$P + Q + R = 1$$

 $p + q = 1$

Evolution takes place in populations...

T. Dobzhansky, E. Mayr: population as a shared gene pool \approx set of shared alelles or gametes

local populations (subpopulations, demes)

es) global population, metapopulation

Evolution takes place in populations...

Local populations also share a system of mating

populations natural, experimental, agricultural, model

Model populations – Hardy-Weinberg population

Characteristics:

diploid

sexual reproduction

discrete generations

2 alleles, "fair" segregation 1:1

same frequencies of alleles in both sexes

Model populations – Hardy-Weinberg population

Characteristics:

<u>random mating (panmixis)</u> non-random: assortative mating, inbreeding

very large (effectively infinite) size

no gene flow

no mutation

no selection

Why don t we observe the Mendelian ratios in nature?

R. C. Punnett

Godfrey Harold Hardy

HARDY-WEINBERG PRINCIPLE

Godfrey Harold Hardy (1877-1947)

Genotype frequencies in zygotes:

$$f'_{AA} = p^{2}$$

$$f'_{Aa} = pq + qp = 2pq$$

$$f'_{aa} = q^{2}$$

$$p^{2} + 2pq + q^{2} = 1$$

Wilhelm Weinberg (1862-1937)

HARDY-WEINBERG PRINCIPLE

- Alelle frequencies stable across generations
 = Hardy-Weinberg equilibrium (HWE)
- 2. HWE achieved within a single generation of random mating

Frekvencies of rare alleles

heterozygotes most frequent when p = q = 0,5

 f_{Aa} decreases with 2pq f_{aa} decreases with $q^2 \Rightarrow f_{Aa}/f_{aa}$ increases \rightarrow rare allele "hidden" for selection in heterozygous state

Possible causes of HWE violation:

Methodic causes:

null alleles, allelic dropout

Violation of some of the assumptions of the H-W population:

Heterozygote deficiency:

selection against heterozygotes nonrandom mating (inbreeding, assortative mating) structured populations (different allele frequencies, cf. Wahlund effect)

Heterozygote excess:

selection in favour of heterozygotes nonrandom mating (outbreeding, negative assortative mating) migration mutation

GENETIC VARIATION IN POPULATIONS

Methods of the study of genetic variation:

Polymorfism:

```
proportion of polymorphic loci (P)
```

```
sample size usually finite \Rightarrow
```

limit 5% ($P_{0.05}$) or 1% ($P_{0.01}$)

number of alleles per locus (*A*; allele diversity, allele richness) mean observed heterozygosity (H_o) mean expected heterozygosity (H_e) = gene diversity

nucleotide polymorphism (θ)

```
nucleotide diversity (\pi)
```

GENETIC VARIATION IN NATURAL POPULATIONS

Issue of the extent of variation in natural populations:

T.H. Morgan, H. Muller: "classical" model limited variability

A. Sturtevant, T. Dobzhansky: "equilibrium" model variation widespread

GENETIC VARIATION IN NATURAL POPULATIONS

1966: Harry Harris – humans; Richard Lewontin, John Hubby – D. pseudoobscura

microsatellites, minisatellites \rightarrow high mutation rate, high variability question to what extent protein electrophoresis representative?

VARIATION AT MORE LOCI

proximity of loci = linkage

valid H-W assumptions \Rightarrow formation of linkage equilibrium

this proces can be slow \Rightarrow linkage disequilibrium (LD) coefficient of LD: D

relation of *D* to recombination *r* :

Causes of linkage disequilibrium:

absence of recombination (eg. inversion)

nonrandom mating

LD needn t exist only between loci on the same chromosome!

selection

recent mutation

sample is a mixture of 2 species with different allele frequencies

recent merging of 2 populations

random genetic drift

= mating between relatives

eg. repeated autogamy (self-fertilization, self-pollination):

initial generation (HWE): 1/4 AA, 2/4 Aa, 1/4 aa

1. gen. of selfing:

2. gen. of selfing:

3. gen. of selfing:

3/8 AA, 2/8 Aa, 3/8 aa

7/16 AA, 2/16 Aa, 7/16 aa

15/16 AA, 2/32 Aa, 15/16 aa

INBREEDING COEFFICIENTS

1. Pedigree inbreeding, F:

= probability of autozygosity

autozygosity:

alleles identical by descent (IBD), always homozygous

allozygosity:

either heterozygote or homozygote (alleles identical by state, IBS)

Inbred population = pop. in which the probability of autozygosity due to inbreeding > in panmictic population

F = probability that an individual inherited both alleles at a locus from the same ancestor (both alleles are IBD)

Inbred population = pop. in which the probability of autozygosity due to inbreeding > in panmictic population

F = probability that an individual inherited both alleles at a locus from the same ancestor (both alleles are IBD)

a) Amenhotep I. and Aahotep II.	25%
b) Aames	37.5%
c) Hatsheput	25%

d) Remaining in the pedigree are not inbred, ie F = 0

2. System-of-mating inbreeding, F_{IS} :

= deviation from HWE

$$F_{\rm IS} = (H_{\rm e} - H_{\rm o})/H_{\rm e}$$

$$-1 \le F_{IS} \le +1$$

 $H_{\rm o}$ = observed $H_{\rm e}$ = expected heterozygosity

F and F_{IS} don t measure the same thing!

F is the <u>individual</u> measure, F_{IS} is the <u>group</u> measure

Př.: hutterites (anabaptists) of the Great Plains in USA and Canada:

in spite of respecting the incest taboo this is one of the most inbred human groups known (F = 0,0255)

caused by a small number of founders (Protestants from Tyrol and Carinthia, 16th century)

Genetic effects of inbreeding:

inbreeding changes genotype frequencies (increase of homozygote freq.)

Phenotypic effects of inbreeding:

inbreeding depresion

diseases, reduced fertility and/or viability

Leavenworthia alabamica

BUT! Not always must inbreeding be deleterious (eg. many species of embryophyte (land) plants are self-fertilising). Moreover, the inbreeding effects can differ within a single species depending on environment.

Inbreeding depression in humans:

the Amish: haemophilia B, anemia, myotonic dystrophy, Ellis-van Creveld syndrome (dwarfness, polydactyly), defects in nail development, dental defects

Vadoma tribe, Zimbabwe (tzv. "Ostrich people"): ectrodactyly

Mormons of Hilldale (Utah) and Colorado City (Arizona)

Amazonia Indians

aristocratic dynasties

Human inbreeding depression:

Charles II of Spain:

unnaturally big head, deformed mandible, weak body, difficulties with walking and other defects, mental and psychical defects, impotence, sterility

Francis II:

in some children mental retardation, hydrocephaly, seizures, some unable of living without assistence

Maria Theresa

Francis I of Lorraine

Figure 6. Cross pollination of two inbreds to produce a vigorous hybrid.

hybrid vigour (heterosis)

ASSORTATIVE MATING

= higher probability of mating between individuals with the same phenotype

can be caused by active mating preference but another causes can exist as well

- eg.: phytophagous insects individuals living at different host species can mature in different times \Rightarrow more frequent mating between individuals of the same phenotype (confinement to the host) <u>without active mating</u> <u>preference</u>
- \Rightarrow this is only a positive <u>phenotypic correlation</u>

assortative mating causes deficit of heterozygotes

assortative mating causes linkage disequilibrium (LD)

Differences between inbreeding and assortative mating:

affects only locus (loci) connected with preferred phnotype inbreeding affects all loci

ass. mating is <u>a powerful evolutionary force</u> (strong LD at more loci) × inbreeding only strenghtens existing LD, and only in the case of selfing, in other cases recombination "more succesful" \rightarrow reduction of LD

NEGATIVE ASSORTATIVE (DISASSORTATIVE) MATING

preference of mates with different phenotypes
 results in <u>intermediary allele frequencies</u>, <u>reduces LD</u>
 eg. preference of males with different MHC (mouse, man)

