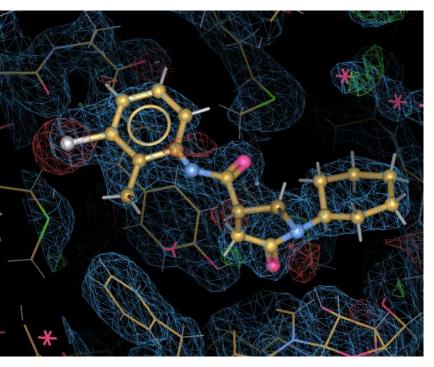

Electron density maps

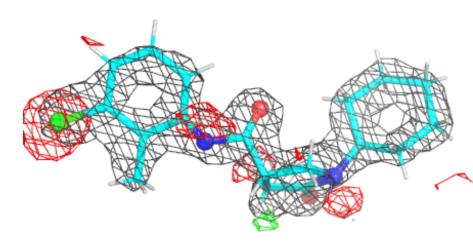
- When looking at PDB structures Electrons Density (ED) maps are more/as important as the 3D atomic model!
- ED is a 3D map of where the scattering electron cloud is according to the measured X-ray data.
- 2Fo-Fc map indicates where electrons are (according to SF and model). Normally colour blue or grey.
- Fo-Fc difference map:

green for positive difference: where the current model fails to place sufficient electrons

Red for negative difference: where the current model places too many electrons



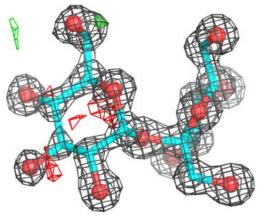
www.ebi.ac.uk/pdbe/entry/pdb/4z9l/bound/ANP



Electron density for a ligand with poor fit

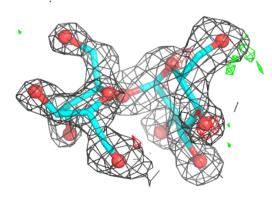
BPDBe

2h7p.pdb: ED around ligand, as visualized in buster-report

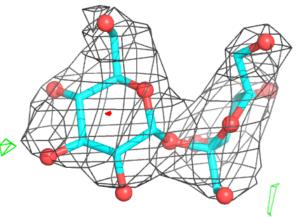

2h7p.pdb: ED visualized in coot Notice difference density around ligand

2h7p has been obsoleted and replaced 4tzt with really superb ED and ligand fit

http://grade.globalphasing.org/tut/erice_workshop/



Data resolution affects electron density detail: Well placed/refined sucrose ligand at different data resolutions:

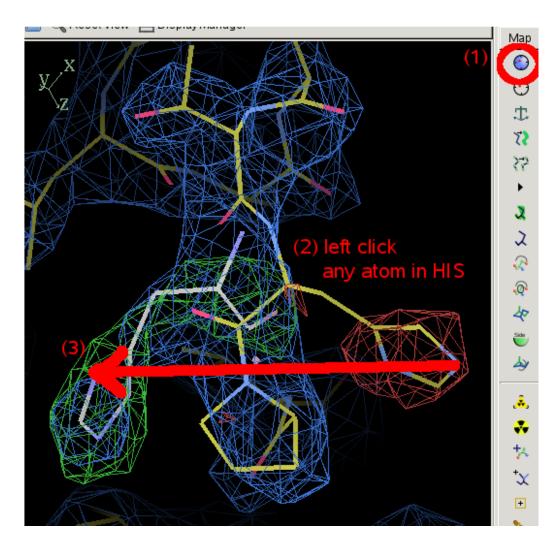

1ylt 1.2Å resolution

"atomic resolution" 2Fo-Fc ED shows atoms as Individual blobs. Need higher resolution for hydrogen atoms

2pwe 2.0Å resolution

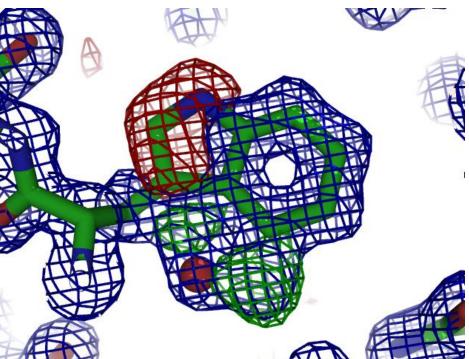
Typical medium resolution for ligand studies. Can see ring pucker

2qqv 3.0Å resolution


Low resolution. Ligand placement unambiguous but fine detail cannot be seen

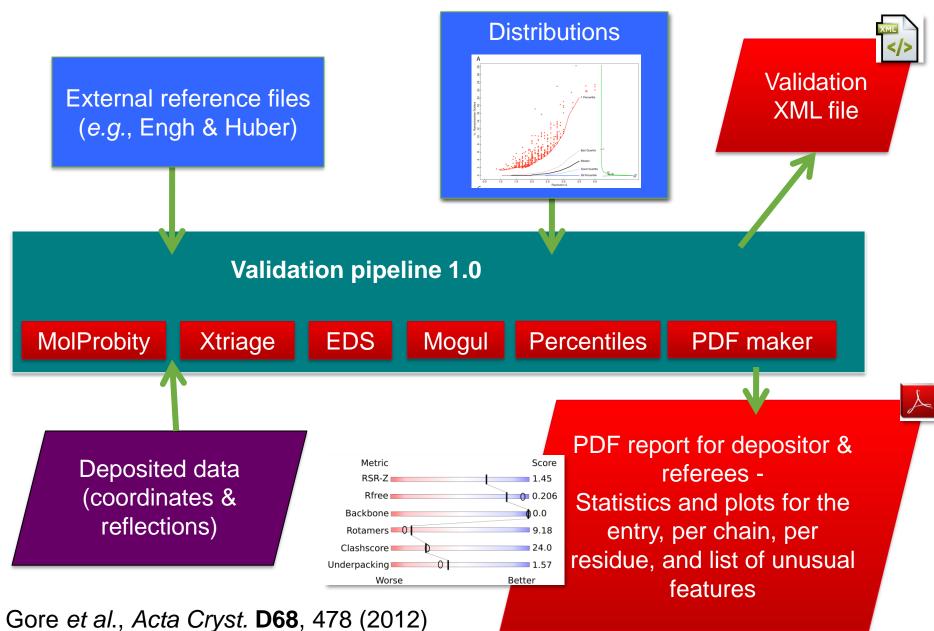
Model improvement

- Basically interpret electron density maps in real space to improve model
- Initially automated methods (warp/arpwarp) used
- But mostly manual corrections to the model are done using the Coot program
- Look at Fo-Fc difference map for both negative and positive features
- Build into 2Fo-Fc


Why do crystallographers make mistakes?

- Limitations to the data
 - Incomplete
 - Weak
 - Limited resolution
 - Space and time averaged
 - Phase errors
- The human factor

BPDBe


- Subjectivity and bias involved in map interpretation and refinement (even at atomic resolution!)
- Inexperienced people do the work, use of black boxes, …
- Not everybody is a good chemist
- Even experienced people make mistakes

EMBL-EBI

wwPDB X-ray validation pipeline

wwPDB validation reports

Full wwPDB X-ray Structure Validation Report (i)

Jan 31, 2016 - 06:45 PM GMT

- PDB ID : 1CBS
- Title
 : CRYSTAL STRUCTURE OF CELLULAR RETINOIC-ACID-BINDING

 PROTEINS I AND II IN COMPLEX WITH ALL-TRANS-RETINOIC ACID

 AND A SYNTHETIC RETINOID

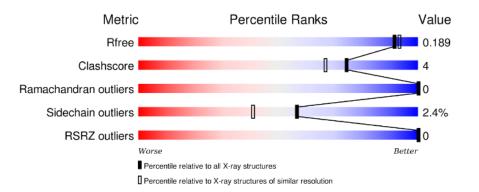
 Authors
 : Klevwegt, G.J.; Bergfors, T.; Jones, T.A.
- Authors : Kleywegt, G.J.; Bergiors, 1.: Deposited on : 1994-09-28
- Deposited on : 19
- Resolution : 1.80 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry. We welcome your comments at validation@mail.wwpdb.org A user guide is available at http://wwpdb.org/validation/2016/XrayValidationReportHelp with specific help available everywhere you see the (1) symbol.

Page 2 Full wwPDB X-ray Structure Validation Report

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \ DIFFRACTION$

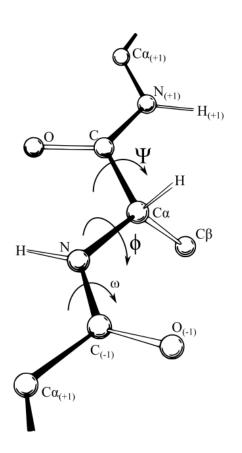

The reported resolution of this entry is 1.80 Å.

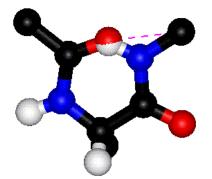
BPDBe

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

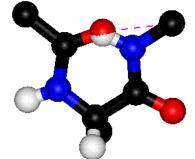
- Pipeline produces PDF report and XML output
- Slider graphic useful

• Current PDF is "rather verbose"


pdbe.org/valrep/1cbs

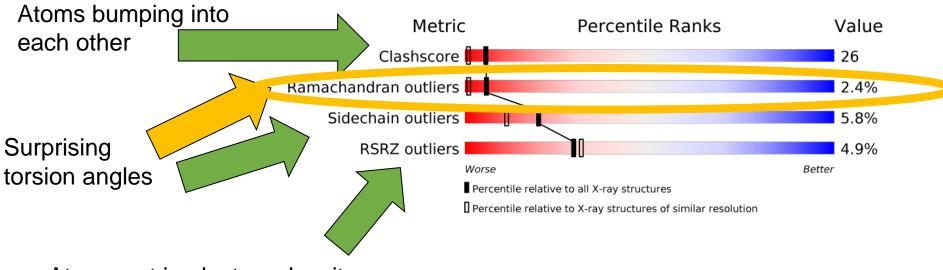

1CBS

Ramachandran plot


- Look at main chain dihedral angles phi and psi
- Ramachandran et al. (1963) worked out only certain combinations of phi/psi cause clashes

BPDBe

Rotation around φ with $\psi=0^{\circ}$


Rotation around ψ with $\varphi=0^{\circ}$ (Images kindly provided by David Sanders,

University of Saskatchewan.)

Summary 'Sliders' Validation information for users

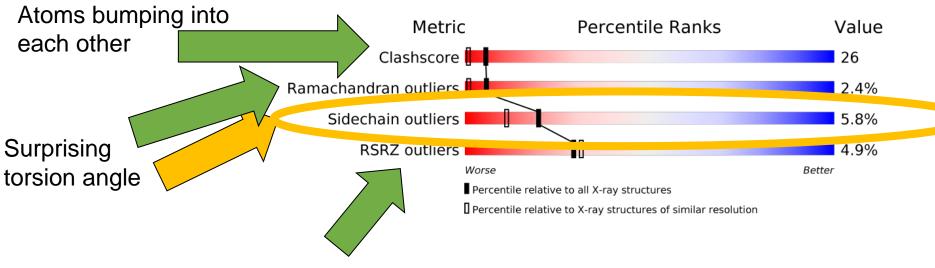
Atoms not in electron density

Sidechain outliers

 Just like the main chain phi and psi dihedral angles amino acid sides chains have chi angles with have preferred and disallowed regions

have χ_4 χ_3 χ_2 χ_1 χ_1 χ_2 χ_1 χ_1 χ_2 χ_2 χ_2 χ_1 χ_2 χ_2 χ_2 χ_2 χ_2 χ_1 χ_2 χ_2

χs


The 5 chi angles of an arginine side chain

http://www.ccp14.ac.uk/ccp/web-mirrors/garlic/garlic-1.5/commands/dihedrals.html

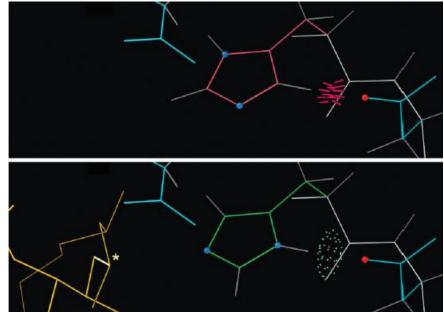
Summary 'Sliders' Validation information for users

Atoms not in electron density

MolProbity – clash score

- Idea is to look for bad nonbonded contacts after hydrogen atoms have been added to the model
- Very powerful method
- Suggests NQH flips
- Included in wwPDB validation reports
- Or Use from:

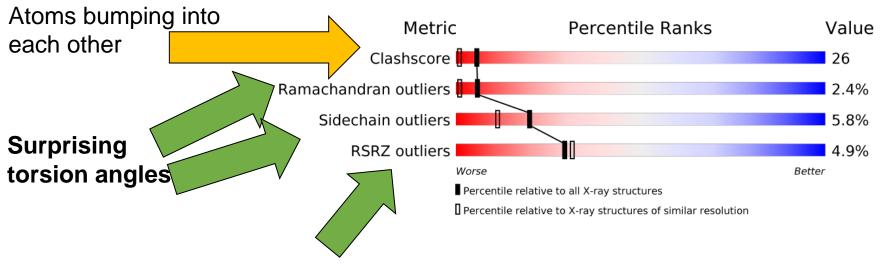
BPDBe


- Molprobity web site
- Or within coot

Nucleic Acids Research, 2007, Vol. 35, Web Server issue W375-W383 doi:10.1093/nar/gkm216

MolProbity: all-atom contacts and structure validation for proteins and nucleic acids

Ian W. Davis¹, Andrew Leaver-Fay², Vincent B. Chen¹, Jeremy N. Block¹, Gary J. Kapral¹, Xueyi Wang², Laura W. Murray¹, W. Bryan Arendall III¹, Jack Snoeyink², Jane S. Richardson¹ and David C. Richardson^{1,*}

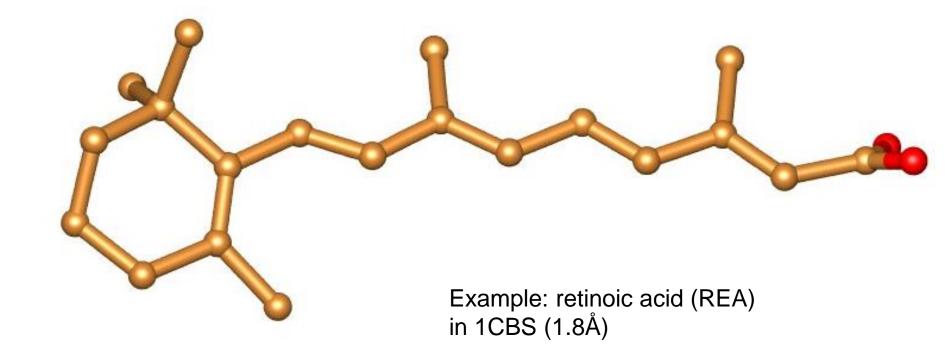

¹Department of Biochemistry, Duke University, Durham, NC, USA and ²Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA

http://molprobity.biochem.duke.edu/

Validation information for users **Summary 'Sliders'**

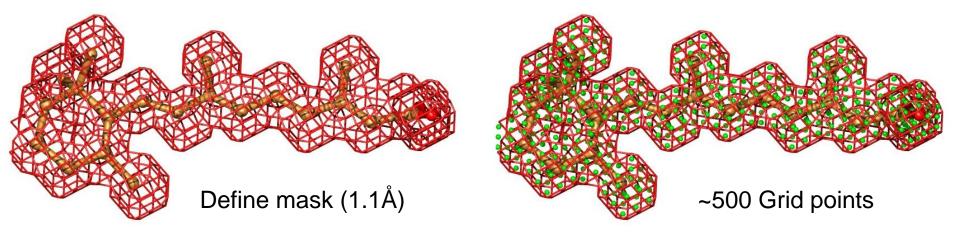
Atoms not in electron density

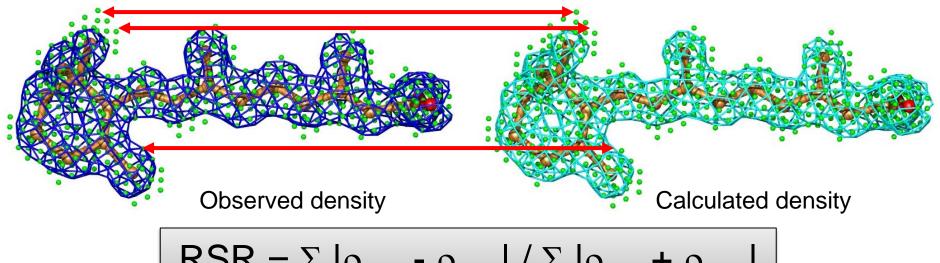
Real-space fit


- Quantitative, real-space measure of how well a residue fits its local density (Jones *et al.*, 1991)
- Express as R-value (RSR) or correlation coefficient (RSCC)
- RSR = $\Sigma \mid \rho_{obs} \rho_{calc} \mid / \Sigma \mid \rho_{obs} + \rho_{calc} \mid$
- Sums extend over all grid points inside a mask around the residue

RSR - real-space R-value

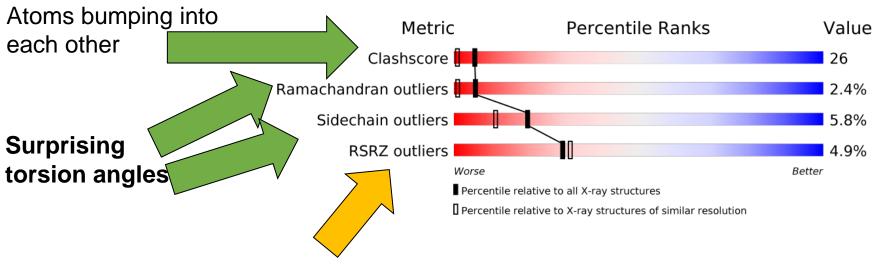
• RSR = $\Sigma |\rho_{obs} - \rho_{calc}| / \Sigma |\rho_{obs} + \rho_{calc}|$





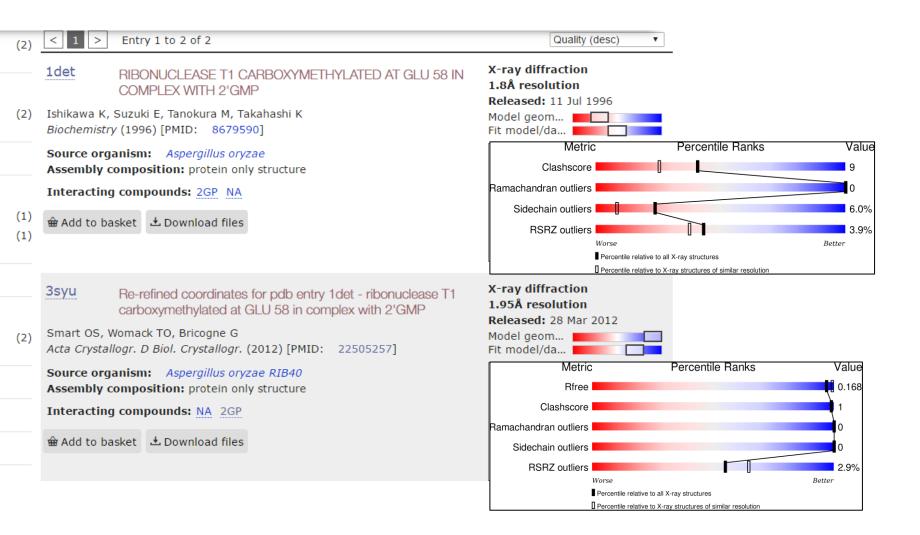
pdbe.org/1cbs

RSR - real-space R-value


 $RSR = \Sigma \left| \rho_{obs} - \rho_{calc} \right| / \Sigma \left| \rho_{obs} + \rho_{calc} \right|$

pdbe.org/1cbs

RSRZ is reported in Summary 'Sliders'



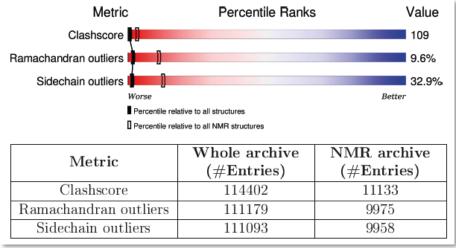
Atoms not in electron density

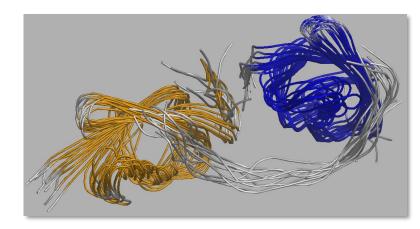
PDBe simplification of validation sliders

"Best molecule" – integration of validation information in PDBe query system

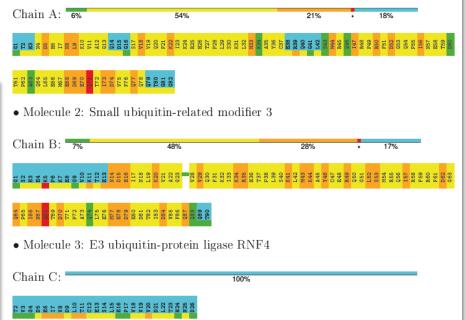
Search results		C Reset * "Protein-serine/threonine kinases"	⊕ View basket (0)
Refine query:		 resolution:[1.5 TO 2] Save search Download Per page: 10 	
 Macromolecules (100+) Cyclin-dependent kinase 2 Mitogen-activated protein kinase 14 cAMP-dependent protein kinase catalytic subunit al Casein kinase II subunit alpha Serine/threonine-protein kinase Chk1 Mitogen-activated protein kinase 1 Death-associated protein kinase 1 Serine/threonine-protein kinase pim-1 3-phosphoinositide-dependent protein kinase 1 	(200) (82) (80) (52) (44) (37) (33) (28) (24) (23)	Protein: 3-phosphoinositide-dependent protein kinase 1 Best example found in: 4rqk Crystal structure of PDK1 in complex with ATP and the PIF-pocket ligand RS1 X-ray diffraction Rettenmaier TJ, Wells JA Released: 17 Dec 2014 Proc. Natl. Acad. Sci. U.S.A. (2014) [PMID: 25518860] Released: 17 Dec 2014	
Molecule type (1) Protein Interacting macromolecules (98)	(1031)	 	
 Interacting compounds (100+) Species name (38) Zea mays Rattus norvegicus Arabidopsis thaliana Saccharomyces cerevisiae Synechococcus elongatus PCC 7942 Toxoplasma gondii 	(27) (24) (16) (10) (8) (8)	3hrf Model geometry 1.9Å Fit model/data 4rqv Model geometry 1.502Å Fit model/data 4rqv Model geometry 1.502Å Fit model/data 4ct1 Model geometry 1.85Å Fit model/data 4a07 Model geometry 1.85Å Fit model/data 3rwp Model geometry 1.92Å Fit model/data	
Xenopus laevis	(8)		

88PDBe


www.ebi.ac.uk/pdbe/entry/search



NMR validation

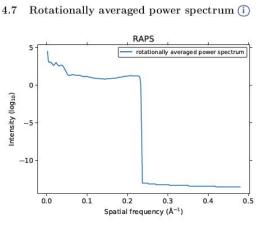

- NMR VTF recommendations published
- Global quality scores reported for "welldefined residues" only
 - As averages over the ensemble
 - Medoid model only

BPDBe

• Molecule 1: Small ubiquitin-related modifier 3

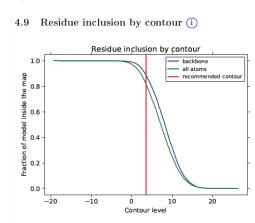
Montelione et al., Structure 21, 1563 (2013)

EM validation reports

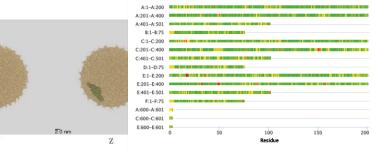

- Prototype EM map-validation reports
 - Most of the PDBe "Visual analysis" functionality implemented
- 4 Map analysis (i)

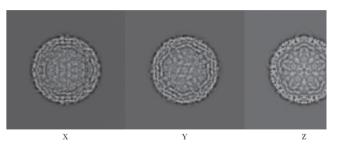
4.1 Map parameters (i)

Property	Value
Endianness	little-endian
Pixel size	1.04
Axis order	XYZ
Number of pixels in X	768
Number of pixels in Y	768
Number of pixels in Z	768
Minimum density	-19.308
Maximum density	26.264
Average density	0.0267
Standard deviation of densities	1.129
Range of densities	45.572
Recommended contour	3.5


BPDBe

4.8 Model to map fitting (i)


х


20 m

4.10 Residue inclusion at recommended contour (i)

Residue inclusion at contour level 3.5

Compare to: pdbe.org/emd-8116/analysis

Y

Ligands in proteins

- So you have successfully navigated all the hazards so far have great data, well integrated, successful MR, refinement model building, Ramachandran analysis
- You have density in the active site and the whole point of the structure is to find how the interesting drug candidate ligand binds
- Here be dragons!

