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Context

equilibrium (binding affinities)

’ kinetics

Thermodynamic properties:
H,S, G, ..

Phenomenological thermodynamics

A

Time average: Ensemble average:

B --

Statistical thermodynamics
Monte Carlo simulations

Molecular Dynamics

Mechanical properties:

° E
Molecular modelling
How to describe interactions? ’




Context

Quantum Mechanics

» It can properly describe systems composed of atoms, which are further composed from
electrons and atom nuclei (dual character - particle/wave).

» Microstate energies are solution of time-independent Schrodinger equation.

/5@”1« (r) :/ W (1)

? » Probabilistic description of the structure in the
® given state

» Unsolvable for microstates of macrosystems (>
1023 atoms)

- » Practically impossible to solve even for small
chemical systems (hydrogen molecule)

» Analytically solvable for simple systems

odelling



QM Description of
Simple Systems

» hydrogen atom

: : approximate description for
» harmonic oscillator ximate dese
> rigid rotator > rotational
. . . » translational
» particle in potential well motions

» hydrogen molecule

IRt Uction to Molecular Modelling



L
Hydrogen Atom




Hydrogen atom

Hamiltonian

[Xel yel Ze] hz
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electrostatic interaction
between proton and electron

operator describing
proton motion

[Xor Yor 2]

operator describing
electron motion

Motion of two bodies can be described by motion of one body with a reduced weight:

Mm What is the reduced mass of hydrogen atom (proton/electron)?
H = M = 1836 au
M +m m=1au <=

1 = 0.99945 au ) practically the same weight




l Hydrogen atom

[Xel yel Ze]
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Cartesian vs spherical coordinates

[xel yel ze]
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l Hydrogen atom - solutio_

Hy (r,0,9)=Ey, (r,0,0)

Wk (7‘,9, (0) — Rnl(r)Ylm (99 ¢)

~
Z2€2 angular (angular) part of the wave function (WF)
E =-
k sz'goaonz radial part of the wave function
quantum numbers: in atomic units:
n - principal quantum number (1,2,3 ...) 1
| - angular quantum number (O, ..., n-1=5,p, d, f, g,...) Ek -

2n’

m - magnetic quantum number (-, ..., 0, ..., I)

Z - proton number g, - vacuum permittivity
e - electron charge  a, - Bohr radius




angular component of the wave function

3s 1—*1" radial component of the wave function

Jp

3d

2p

L

l Hydrogen atom - soluti

My —-————

_h..g

y(y*-3x7)

Modelling




Summary

» Hydrogen atom and hydrogen like atoms (atom cations with one electron) are only

chemical systems, whose SE is solvable analytically.

» Allowed energy is discretized (quantized) and dependent only on the principal quantum

number.

» Hydrogen atom WF is a foundation for atomic orbitals employed by quantum chemistry

methods.

a)

b)

a) The hydrogen atom has degenerate states, i.e., states with the same n have the same

energy.
b) Atoms with more electrons.




l SR solution for simple s_

» hydrogen atom

: : approximate description for
» harmonic oscillator S braton
» rigid rotator > rotational
. . ] » translational
» particles in potential well | motions




Harmonic Oscilator




l Harmonic oscillator _

Hamiltonian
A h h2
H=——V - Vi +V(r)
2m, 2m 2
spring with stiffness K
1 :
F(r)zK(r—ro) > V(r)zzK(r—rO)
the force is proportional to the deviation
from the equilibrium position
Simplification:
2 1
m,m A h 2
y=—"1"2 H=——V"+V(r) V(’”)Z_K(”_’”o)
m, +m, 21 2




[:[Wk(r) = Ey, (1)

Solution:

v, (r)=2,(r)

E, = (v+ljhw
2

guantum numbers:

v - vibrational quantum number (0,1,2,3 ...)

angular frequency W =

K

H V--ka?""_;

l Harmonic oscillator - sol_

e YT




lSummary

» Quantum harmonic oscillator cannot have zero energy in the ground state.

» This intrinsic behaviour can be explained by uncertainty principle.

» For low vibrational numbers, the highest probability for particle finding is at
equilibrium distance (this is opposite to the classical harmonic oscillator

behavior).

» Energies are equidistant.

n u
g g
position/momentum :
4 4
h
AxAp > — 3 3
2
- no motion (exac zZ 2
- position at potential botto act position) 14
0 0




l Harmonic vs anharmon_

Simplified description of vibrational motion. A more accurate empirical description is given
by Morse's potential.

."50’:65. Morse potential

—  V(r)=D, (1 — e_“('"_'b))z

Harmonic potential
D, 1

Vi(r) ZEK(r—rO)z

Energy

Internuclear Separation (r) e
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Rigid Rotor




Fo Hamiltonian
A h’ h2
2
1 2 2
2m, 2m 2

with constraint r=r

Simplification:

X,Y,z] U= mm,
m, +m,
. K
H=-——V’
2u

with constraint r=r,




Wl Rigid Rotor - solution .
Hy ,(0,0)=E,y,(0,9)

v, (0,0)=Y,,(0,0)

h2 angular part of the wave function

E =—I(+1
1 2[( )

guantum numbers:
| - angular quantum number (0,1,2, ...)
m - magnetic guantum number (-,...,0,...,1)

Solution:

2
moment of inertia ] — ,Uro




Particle in a Box




Particle in a box

V = o0 1D potential box (the infinite potential well) is infinitely
deep, so the probability of particle finding outside the box
B L R IS zero.
Hamiltonian
2 with constraint
3 2
y =0 T vn=9
< ém > o m forr>Landr<0
Solution: N\/I
. nT
Wn = A4sin T X —a
standing waves
2 _2
g =T e B =<_A
no 2 n
27}’lL n=1

guantum numbers:
n - quantum number (1,2, ...) For a multi-dimensional potential box (3D), the

dimensions can be replaced by the box volume.




.
Hydrogen Molecule

» Many electron atoms (He, Li, ...)
» Born-Oppenheimer approximation
» One-electron approximation
> ...
» Many atom (=many electron) molecules
» Born-Oppenheimer approximation

» One-electron approximation
> ...




l Revision

Ag(x, 1) = in 220
ot

Casove zavisla Schrodingerova rovnice




_ 3, 09(%,1) #(x,t) =y (x)f ()
Ot

He(x,1)

time-dependent Schrodinger equation

time-independent Schrédinger equation

]_A[Wk (x) = Ew, (X)

system can exist in several quantum states described by
wavefunction ¥, and energy E,




Aé(x,t) = ih 5¢é’t‘» /) B(x,1) =y () (1)

time-dependent Schrodinger equation

time-independent Schrédinger equation

Born- O hei imati g —
orn- Oppenheimer approximation HWk (X) — Eka (X)
v(x)=¥(,R)y(R) /(/
; S B v R)=E, 7 (R
HY (r,R)=E (R)¥ (r,R) R X1 (R) = Eppr 1 7, (R)
electron motion in the static field of nuclei nuclei motion in effective field of electrons
electronic properties vibration, rotation, translation




HY (r,R)=E (R, (r,R) Hx/(R)=Epy, 7,(R)

electron motion in the static field of nuclei nuclei motion in effective field of electrons
electronic properties vibration, rotation, translation
. . . 1s+2s
vibration, rotation, 10 |

, translation energy part
electronic energy part

N

m (Ropt,m ) + EVRT,I 2

0
s+1s
Pl g
'
v

total energy of the state optimal geometry, at
which E, is minimal

Energy / eV

Ly




HY (r,R)=E (R)¥, (r,R) Hx/(R)=Ep, 7,(R)

electron motion in the static field of nuclei nuclei motion in effective field of electrons
electronic properties vibration, rotatjon, translation

je mozné obdobnym
zplsobem dale rozdélit na
samostatné prispévky
vibracni, rotacni a translacni

 /
EVRT,I = EV,i T ER,j T ET,k




l Structure vs system st_

only part of the quantum
state description
Structure l

E =E(1r,) + Eygr

Function Eyrr is nonzero even at 0 K
because of vibrational (and
translational) energy.




l Homework

1. What is the order of the dissociation energies of H, (hydrogen molecule), D,
(deuterium molecule), and T, (tritium molecule)?

1s+2s
10 |

Focus on the ground state (1s+1s) only:

;f;'—_'/
. — Help:
> 1s- 1s = vibrations are quantized
o 4|
£ 1 vibrational quantum
| E, :(V-I_E hv number 0,1,2, ...

= neglect rotation and translation (why?)

Total energy of the ground state:

E=E(r)+E,(v=0)

Rotational levels

0.1 0.2

r/nm




