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Local vs global minimum on PES

E(x)

x
configurations

local minima

global minima

REMEMBER: This is 1D projection of E(R), which is a function 
of 3N variables (N-number of atoms).

To find a global minimum, it is necessary to find ALL local minima. Due to PES 
complexity, this is not computationally achievable even for small systems.
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Local vs global minimum on PES

E(x)

x
configurations

local minima representing some 
conformational changes

nearest "global" minimum

for example
reactant state

global minimum representing a given state

for example
product state

REMEMBER: This is 1D projection of E(R), 
which is a function of 3N 
variables (N-number of 
atoms).



C7790 Introduction to Molecular Modelling -4-

Local vs global minimum on PES
Finding local minimum:

➢ it is rather simple task, which employs local geometry optimizers
➢ the success of finding of local minimum is almost always guaranteed (problematic 

might by shallow minima).

Finding global minimum:

➢ it is VERY difficult task, which can employ deterministic and/or stochastic methods 
such as
➢ genetic algorithms
➢ Monte-Carlo sampling algorithms
➢ parallel tempering
➢ others

➢ the success of finding of global minimum is not guaranteed
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Finding the optimal 
geometry (local minima)
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Optimal geometry

local minima



C7790 Introduction to Molecular Modelling -7-

Optimization methods

Geometry optimization methods
I. zero order (energy only)

▪ downhill simplex method
II. first order (energy and gradient only)

▪ steepest descent method
▪ conjugate gradient method

III. second order (energy, gradient and Hessian)
▪ Newton's method

IV. pseudo-second order (energy, gradient and approximate Hessian)
▪ Broyden-Fletcher-Goldfarb-Shanno method (BFGS)

)(RE

Task: find R such E(R) is minimum (has zero gradient) 

min!

the most often used approach
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Optimization methods

Geometry optimization methods
I. zero order (energy only)

▪ downhill simplex method
II. first order (energy and gradient only)

▪ steepest descent method
▪ conjugate gradient method

III. second order (energy, gradient and Hessian)
▪ Newton's method

IV. pseudo-second order (energy, gradient and approximate Hessian)
▪ Broyden-Fletcher-Goldfarb-Shanno method (BFGS)

Above mentioned methods (algorithms) are general for any function:

The function f is called, variously, an objective function, a loss function or cost function 
(minimization), a utility function or fitness function (maximization), or, in certain fields, 
an energy function or energy functional. A feasible solution that minimizes (or 
maximizes, if that is the goal) the objective function is called an optimal solution.

https://en.wikipedia.org/wiki/Mathematical_optimization
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Zero-order methods
Downhill simplex method
(Nelder-Mead algorithm)

➢ iterative method
➢ only energy is required (no gradient or Hessian)
➢ can escape local minima and can find nearest 

"global" minimum 

https://sudonull.com/post/69185-Nelder-Mead-optimization-method-Python-implementation-example
https://codesachin.wordpress.com/2016/01/16/nelder-mead-optimization/

Other zero-order methods:
➢ BOBYQA
➢ COBYLA
➢ majority of global optimizers
➢ etc.

Further details:
https://en.wikipedia.org/wiki/Derivative-free_optimization
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First-order methods

https://en.wikipedia.org/wiki/Gradient_descent

Steepest Descent Method
➢ iterative method
➢ only gradient is required (energy is only 

required for monitoring)
➢ it can find a local minimum

𝑹𝑛= 𝑹𝑛−1 − 𝛾
𝜕𝐸(𝑹𝑛−1)

𝜕𝑹

energy gradient"step" size

Other first-order methods:
➢ conjugate-gradients
➢ etc.

step size can be a constant, varying, or different for geometry domains (bonds, angles, …)

➢ Rarely used for QM as these methods require 
more iterations to reach a minimum than psedo-
second order methods. 

➢ Quite often used for MM.
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Second-order methods

𝑹𝑛= 𝑹𝑛−1 − 𝛾
𝜕2𝐸(𝑹𝑛−1)

𝜕𝑹2

−1
𝜕𝐸(𝑹𝑛−1)

𝜕𝑹

Newton's Method
➢ iterative method
➢ gradient and Hessian are required (energy is only required for monitoring)
➢ it can find a local minimum
➢ the method converges significantly faster (in smaller number of steps) than zero-

order or first-order methods
➢ it is EXTREMELY computationally expensive due to Hessian calculations

energy gradient
"step" size Hessian

Solution: pseudo-second order methods (such as BFGS)
➢ initial Hessian is approximated (empirical approaches, or unit matrix)
➢ in next iterations, Hessian is updated using gradients
➢ Hessian is thus improving during optimization, which results in faster 

convergence in final steps 

https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

step size can be a constant, varying, or different for geometry domains (bonds, angles, …)
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Cartesian vs Internal Coordinates

O

H 1 0.974298

O 1 1.454349 2 96.868054

H 3 0.974298 1 96.868054 2 239.552651

Cartesian coordinates

Internal coordinates (Z-matrix)

bond length bond angle torsion angle

3N

3N-6
3N-5

Number of degrees of freedom:

Number of degrees of freedom:

(linear diatomic molecule)

x y z

O -0.180077 -0.046023 -0.062789

H  0.196208 -0.747659  0.498793

O  0.006537  1.047922  0.877207

H -0.931885  1.299156  0.951390

O

O

H

H
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Internal vs Cartesian coordinates

Optimization in internal coordinates converges fasters than in Cartesian coordinates:
➢ Hessian in internal coordinates can naturally provide difference between force 

constants of different geometry parameters (bonds, angles, torsions)
➢ This property of internal coordinates allows to use different step sizes for different 

geometry parameters (bonds, angles, torsions).

In some rare cases, optimization in internal coordinates can fail (oscillation, etc.)
Potential solutions:

➢ use different optimization algorithm
➢ switch to Cartesian coordinates



C7790 Introduction to Molecular Modelling -14-

Practical realizations

Avogadro employing MM potential

Nemesis employing MM potential

Gaussian employing QM potential

# RHF/cc-pVDZ Opt NoSymm
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Optimization of initial model

E(x)

x
configurations

for example
reactant state

for example
product state

REMEMBER: This is 1D projection of E(R), 
which is a function of 3N 
variables (N-number of atoms).starting (built) 

models

OK
but not global minima

Models derived from high resolution X-ray structures are 
not problematic.
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Optimization of initial model

E(x)

x
configurations

for example
reactant state

for example
product state

starting (built) 
model

BAD

REMEMBER: This is 1D projection of E(R), 
which is a function of 3N 
variables (N-number of atoms).

➢ In silico (built) models are very susceptible to initial structure.
➢ Therefore, frequency (vibration, Hessian) analysis is a MUST to check 

the nature of optimized stationary point.
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Summary

➢ It is relatively easy to find a local minimum.

➢ All geometry optimizers stops at a stationary point (a point with zero gradient), which 
dos not necessarily need to represent a local minimum.

➢ Due to complexity of PES, it is important to verify a nature of found stationary point 
because the found geometry can represent a transition state or a higher order saddle 
point.

➢ This is especially important for in silico models, which usually starts a far away from 
optimal geometry.
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Homework
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Numerical gradient calculation
Forward differences Central differences
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Numerical gradient calculation
Forward differences Central differences
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it is calculated onceit is calculated for each 
gradient component

a total of 3N + 1 energy calculations

they are calculated for 
each gradient component

a total of 6N energy calculations
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Tasks I

1. Express the gradient of the function E(R) according to the Cartesian 
coordinates of both atoms.

2. The system contains 300 atoms. The calculation of its energy by the quantum-
chemical method takes 15 minutes. Calculation of energy and analytical 
gradient then 20 minutes.

1. Determine the calculation time of the numerical gradient and compare 
it with the calculation time of the analytical gradient.

2. Determine the calculation time of numerical Hessian, which is 
calculated a) from energies and b) from analytical gradients.

3. Suggest a way to speed up the calculation of the numerical gradient a 
Hessian.

2

0 )(
2

1
)( rrKE −=R
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1) For the function below, determine the character of the points with values:

a) x = 1
b) x = 0
c) x = -1

2) In what situation can the second derivative of a function be zero?

3) What is the relationship between the extent of the reaction x and reaction coordinate rC

(also referred to as x)?

Tasks II

33015)( 2 ++= xxxE
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Tasks III

1. Study the mentioned local geometry optimization methods. Focus on their 
principle, advantages and disadvantages compared to other optimization 
methods.

Literature:
(1) Leach, A.R. Molecular Modeling: Principles and Applications, 2nd ed .; Prentice Hall: 

Harlow, England; New York, 2001.
(2) Jensen, F. Introduction to Computational Chemistry, 2nd ed .; John Wiley & 

Sons:Chichester, England; Hoboken, NJ, 2007.


