C7790 Introduction to Molecular Modelling TSM Modelling Molecular Structures

Lesson 16
 Reaction Energy I (general)

PS/2020 Distant Form of Teaching: Rev1

Petr Kulhánek

kulhanek@chemi.muni.cz
National Centre for Biomolecular Research, Faculty of Science
Masaryk University, Kamenice 5, CZ-62500 Brno

Context

macroworld

states

(thermodynamic properties, G, T,...)
phenomenological thermodynamics

free energy
(Gibbs/Heimnoltz)

microworld

Description levels (model chemistry):

- quantum mechanics
- semiempirical methods
- ab initio methods
- post-HF methods
- DFT methods
- molecular mechanics
- coarse-grained mechanics

Simulations:

- molecular dynamics
- Monte Carlo simulations
statistical thermodynamics
microstates
(mechanical properties, E)
microstate $=$ microworld

Revision: Thermodynamics \& Modelling

$a A+b B \rightleftarrows c C+d D$

Fundamental relation

$$
\Delta G_{r}^{0}=-R T \ln K
$$

$$
\begin{aligned}
\Delta G_{r}^{0} & =c \Delta G_{f, C}^{0}+d \Delta G_{f, D}^{0} \\
& -\left(a \Delta G_{f, A}^{0}+b \Delta G_{f, B}^{0}\right)
\end{aligned}
$$

$$
K=\frac{[C]_{r}^{c}[D]_{r}^{d}}{[A]_{r}^{a}[B]_{r}^{b}}
$$

ΔG_{r}^{0} is the standard reaction free energy.
$>$ its value determines the composition of the reaction mixture at the chemical equilibrium.

Revision: Thermodynamics \& Modelling

Fundamental relation

$\Delta G_{r}^{0}=c \Delta G_{f, C}^{0}+d \Delta G_{f, D}^{0}$ $-\left(a \Delta G_{f, A}^{0}+b \Delta G_{f, B}^{0}\right)$

$$
K=\frac{[C]_{r}^{c}[D]_{r}^{d}}{[A]_{r}^{a}[B]_{r}^{b}}
$$

What do we need to know?
We only need to know the properties of individual components involved in the reaction at standard conditions (or at different conditions, which are well defined).

We need to know the composition of solution at equilibrium.

It is hard or impossible to model.

Revision: Partition function and modelling

Consider only the most important microstate

$$
E_{1}, \Gamma_{2}, \Sigma_{3}, \ldots
$$

The most important microstate is the microstate with the lowest energy.

It is very often used for qualitative consideration or when computationally demanding methods are employed (typically quantum chemical calculations).

Reaction Energy

REMEMBER: This is 1D projection of $E(R)$, which is a function of $3 N$ variables (N-number of atoms).

reaction energy

$$
\Delta E_{r}=E\left(\xi_{P}\right)-E\left(\xi_{R}\right)
$$

$>$ potential energy is a state function, thus the reaction path is not necessary for reaction energy calculation
> only reactant and product states need to be characterized
the sign convention:
always use the thermodynamics convention

DQ』

REMEMBER: This is $1 D$ projection of $E(R)$, which is a function of $3 N$ variables (N-number of atoms).
$E(\xi)$

reaction energy
$\Delta E_{r}=E\left(\xi_{P}\right)-E\left(\xi_{R}\right)=E_{P}-E_{R}$
the sign convention:
always use the thermodynamics convention

Binding Energy

Binding is the special case of reaction.

Reactant state:

$>$ model of non-interacting components
Product state:
$>$ complex between A and B, usually non-covalently bound

Binding energy:

$$
\Delta E_{b}=\Delta E_{r}=E_{A B}-\left(E_{A}+E_{B}\right)
$$

Binding Energy

Source of energies (model chemistry):
$>$ potential energy of geometry optimized states (QM, MM, QM/MM, etc.)
$>$ REMEMBER: it does not cover ZPVE (zero-point vibrational energy)
$>$ no thermal contributions
....
$>$ various improvements to $\mathrm{E}(\mathrm{R})$: ZPVE, ideal gas model, etc. ...
$>$ free energy
$>$....
$>$ scoring functions (docking)

Binding Energy

Source of energies (model chemistry):
$>$ potential energy of geometry optimized states (QM, MM, QM/MM, etc.)
$>$ REMEMBER: it does not cover ZPVE (zero-point vibrational energy)
$>$ no thermal contributions
$>\ldots$
$>$ various improvements to $\mathrm{E}(\mathrm{R})$
$>$ free energy
$>$....
$>$ scoring functions (docking)

Sometimes it is convenient to decompose the binding energy into deformation and interaction energies.

Binding vs Interaction Energy

Binding energy is the difference between the energy of the complex minus the energy of the isolated monomers in their minima configuration.

!!! though (hypothetical) pathway, experimentally non-observable !!! its main purpose is to better understand the binding process

Binding vs Interaction Energy

Binding energy is the difference between the energy of the complex minus the energy of the isolated monomers in their minima configuration.

Binding vs Interaction Energy

$>$ Terms "binding energy" and "interaction energy" are very often used interchangeably. Therefore, you have to follow the intended context of a work.
$>$ With increasing model size, the calculation of the binding or interaction energy employing potential energy becomes difficult.

Large models

local minima representing some conformational changes
configurations
> Increasing degrees of freedom (model size) result in increased roughness of PES.
$>$ The nearest "global" minimum representing the state could be difficult or impossible to select.
$>$ Then, the only reasonable solution is to use statistical weighting using the free energy calculations.

Large models, cont.

$>$ Then, the only reasonable solution is to use statistical weighting using the free energy calculations.

All microstates representing a thermodynamic state need to be considered:

$$
E_{1}, E_{2}, E_{3}, \ldots
$$

Canonical partition function:

$$
Q=\sum_{j=1}^{K} e^{-\beta E_{j}}
$$

Helmholtz energy F:

$$
F=-k_{B} T \ln Q
$$

Typical scenario:
$>$ models employing explicit solvent models
Approches:
$>$ molecular dynamics
> Monte Carlo simulations
$>$ etc.

Uncharacterizable compounds

Fundamental relation

$$
\begin{aligned}
\Delta G_{r}^{0} & =c \Delta G_{f, C}^{0}+d \Delta G_{f, D}^{0} \\
& -\left(a \Delta G_{f, A}^{0}+b \Delta G_{f, B}^{0}\right)
\end{aligned}
$$

We only need to know the properties of individual components involved in the reaction at standard conditions (or at different conditions, which are well defined).

What to do if some compound is difficult to describe by modeling?

Typical example: pKa calculations

Example: pKa calculation

This reaction describes the most important chemical change, but the structure of solvated proton is more complex than $\mathrm{H}_{3} \mathrm{O}^{+}$in reality.

$\mathrm{HA}+\mathrm{H}_{\mathbf{2}} \mathrm{O} \rightleftarrows \mathrm{H}_{\mathbf{3}} \mathrm{O}^{+}+\mathrm{A}^{-}$

Definitions:

$$
\begin{aligned}
& p K_{a}=-\log \left(K_{a}\right) \\
& K_{a}=\frac{\left\{\mathrm{H}_{3} \mathrm{O}^{+}\right\}_{r}\left\{\mathrm{~A}^{-}\right\}_{r}}{\{\mathrm{HA}\}_{r}\left\{\mathrm{H}_{2} \mathrm{O}\right\}_{r}}
\end{aligned}
$$

pKa calculation

$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

Definitions:

$$
\begin{aligned}
& p K_{a}=-\log \left(K_{a}\right) \\
& K_{a}=\frac{\left\{\mathrm{H}_{3} \mathrm{O}^{+}\right\}_{r}\left\{\mathrm{~A}^{-}\right\}_{r}}{\{\mathrm{HA}\}_{r}\left\{\mathrm{H}_{2} \mathrm{O}\right\}_{r}}
\end{aligned}
$$

difficult or impossible to model
$H A \longrightarrow H_{\text {solv }}+A^{-}$

$$
K_{a}=\frac{\left\{\mathrm{H}_{\text {solv }}^{+}\right\}_{r}\left\{\mathrm{~A}_{k}^{-}\right\}_{r}}{\{\mathrm{HA}\}_{r}}
$$

(this eq. is already simplified description of reality)
$\left\{\mathrm{H}_{2} \mathrm{O}\right\}_{r}=1$ (activity of bulk water is one)
approximation

How to model (characterize) $\mathrm{H}_{\text {solv }}$?
they can be modelled

pKa calculation

difficult or impossible to model

$\mathrm{HA} \rightleftarrows \mathrm{H}_{\text {solv }}{ }^{+} \mathrm{A}^{-}$

$$
K_{a}=\frac{\left\{\mathrm{H}_{\text {solv }}^{+}\right\}_{r}\left\{\mathrm{~A}^{-}\right\}_{r}}{\left\{\mathrm{HA}^{-}\right\}_{r}} \text { they can be modelled }
$$

Solution:
experimentally known $\mathrm{pK}_{\mathrm{a}}(\mathrm{HA})$

modelled compounds
prediction of $\mathrm{pK}_{\mathrm{a}}(\mathrm{HB})$

pKa calculation - "training"

experimentally known $\mathrm{pK}_{\mathrm{a}}(\mathrm{HA})$

Definitions:

$$
\begin{aligned}
p K_{a} & =-\log \left(K_{a}\right) \\
K_{a} & =\frac{\left\{\mathrm{H}_{\text {solv }}^{+}\right\}_{r}\left\{\mathrm{~A}^{-}\right\}_{r}}{\{\mathrm{HA}\}_{r}}
\end{aligned} \quad \Delta G_{r}^{0}=-R T \ln K_{a} \quad \Delta E_{r}=E_{H_{\text {solv }}^{(+)}}+E_{A^{(-)}}-E_{H A}
$$

Solution:

$$
\Delta G_{r}^{0}=-R T \ln K_{a} \longrightarrow e^{-\frac{\Delta G_{r}^{0}}{R T}}=K_{a} \longrightarrow \frac{\Delta G_{r}^{0}}{R T} \log (e)=p K_{a}
$$

$$
E_{H_{\text {solv }}^{(+)}}=\Delta E_{r}-E_{A^{(-)}}+E_{H A} \quad \longleftarrow \quad p K_{a}=\frac{\Delta G_{r}^{0}}{2.303 R T} \approx \frac{\Delta E_{r}}{2.303 R T}
$$

$$
E_{H_{\text {solv }}^{(+)}}=2.303 R T p K_{a}(H A)-E_{A^{(-)}}+E_{H A}
$$

approximation

pKa calculation - "prediction"

HB
 $\rightleftarrows \mathrm{H}_{\text {solv }}+\mathrm{B}^{-}$

Definitions:

$$
\begin{aligned}
& p K_{a}=-\log \left(K_{a}\right) \\
& K_{a}=\frac{\left\{\mathrm{H}_{\text {solv }}^{+}\right\}_{r}\left\{\mathrm{~A}^{-}\right\}_{r}}{\{\mathrm{HA}\}_{r}}
\end{aligned} \quad \Delta G_{r}^{0}=-R T \ln K_{a} \quad \Delta E_{r}=E_{H_{\text {solv }}^{(+)}}+E_{A^{(-)}}-E_{H A}
$$

Solution:

$$
\begin{gathered}
E_{H_{\text {solv }}^{(+)}}=2.303 R T p K_{a}(H A)-E_{A^{(-)}}+E_{H A} \\
E_{H_{\text {solv }}^{(+)}}^{\downarrow}+E_{B^{(-)}}-E_{H B}=2.303 R T p K_{a}(\mathrm{HB})
\end{gathered}
$$

$$
p K_{a}(H A)+\frac{-E_{A}(-)+E_{H A}+E_{B}(-)-E_{H B}}{2.303 R T}=p K_{a}(\mathrm{HB})
$$

the difference between two pK_{a} is obtained from the modelling

Summary

$>$ For small size models, it is rather simple to characterize all components unambiguously on PES.
$>$ Calculation of reaction (binding) energy is then straightforward (BUT NOT IN QM ${ }^{2}$).
$>$ Binding energy (as special case of reaction energy) quantifies the binding strength of two or more components, for example: protein and inhibitor.
$>$ The binding energy can be conveniently decomposed into the deformation and interaction energies.
$>$ The deformation energy is ALWAYS positive (Why?).
$>$ For strong binders, the interaction energy must be then large enough to counterbalance the deformation energy.
> Calculation of reaction energy can be supplemented by experimental data (typical use: pKa calculations).
$>$ For large models, the simple approach employing PES for reaction (binding) energy calculation is not suitable and more advance sampling techniques must be employed to get reasonable data.

