C7790 Introduction to Molecular Modelling TSM Modelling Molecular Structures

Lesson 25
Molecular Dynamics I

PS/2021 Present Form of Teaching: Rev1

Petr Kulhánek

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Faculty of Science Masaryk University, Kamenice 5, CZ-62500 Brno

Context

macroworld

states

(thermodynamic properties, G, T,...)

phenomenological thermodynamics

equilibrium (equilibrium constant) kinetics (rate constant)

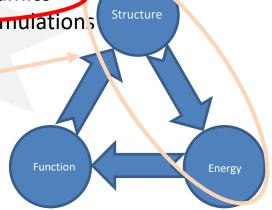
free energy (Gibbs/Helmholtz)

partition function

statistical thermodynamics

microstates

(mechanical properties, E)


microworld

Description levels (model chemistry):

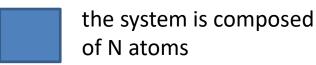
- quantum mechanics
 - semiempirical methods
 - ab initio methods
 - post-HF methods
 - DFT methods
- molecular mechanics
- coarse-grained mechanics

Simulations:

- molecular dynamics
- **Wionte Carlo simulations**
- docking
- ...

microstate ≠ microworld

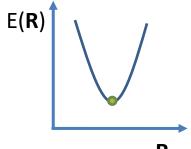
System Evolution in Time


How to simulate time evolution of the system?

$$\overline{M} = \frac{1}{t_{tot}} \int_{0}^{t_{tot}} M(t)dt$$

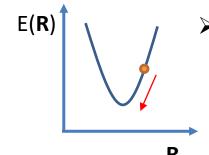
snapshots of the system are a microstates

Mechanical Description (classical physics)*:


- Newton's laws of motion
 - First law states that an object at rest will stay at rest, and an object in motion will stay in motion unless acted on by a net external force.
 - > Second law states that the acceleration of a body over time is directly proportional to the force applied and occurs in the same direction as the applied force. $F_i = m_i a_i$
 - ➤ Third law states that all forces between two objects exist in equal magnitude and opposite direction.

^{*} time evolution can also be described by QM but at cost of theoretical and computational complexity

Forces


The only forces that can act on atoms in the system are from **interatomic interactions**.

Origin of interatomic forces:

- the most stable local configurationthe system at rest

$$\frac{\partial E(\mathbf{R})}{\partial \mathbf{R}} = 0$$

> the system tends to reach more energy favorable configuration

$$\frac{\partial E(\mathbf{R})}{\partial \mathbf{R}} \neq 0$$

Interatomic forces:

$$\boldsymbol{F}_i = -\frac{\partial E(\boldsymbol{R})}{\partial \boldsymbol{r}_i}$$

total potential energy

negative value of potential energy gradient is force

force acting on atom i

position of atom i

Equation of Motions

Second Newton's Law

Forces in molecular systems

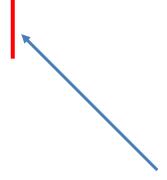
Final equations of motions (EM):

$$m_i \boldsymbol{a}_i = -\frac{\partial E(\boldsymbol{R})}{\partial \boldsymbol{r}_i}$$

$$m_i \frac{d^2 \boldsymbol{r}_i}{dt^2} = -\frac{\partial E(\boldsymbol{R})}{\partial \boldsymbol{r}_i}$$

To describe evolution of the system in time, it is necessary to solve system of N (number of atoms) second order differential equations or motions.

Result: position of atoms in time (trajectory)


$$R(t) = \{r_1(t), r_2(t), ..., r_N(t)\}$$

Numerical Integration

The solution of EM can be obtained by integration of differential equations. Unfortunately, the analytical solution is not feasible even for small systems (three and more atoms).

Numerical integrations

- > Finite difference methods
 - leap-frog algorithm (a variant of Verlet algorithm)
 - velocity Verlet algorithm
- > Gear corrector-predictor methods
- > Runge-Kutta methods

most often used algorithms in MD simulations of (bio)chemical systems

Leap-frog algorithm

1) Initial conditions:

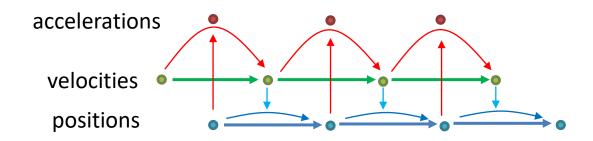
$$r(t)$$
; $v(t - dt/2)$

t time dt time step (integration step)

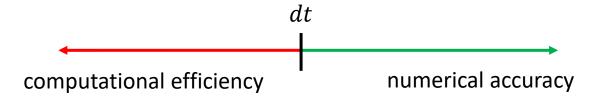
- Molecular dynamics (MD loop)
 - 1) Calculation of forces and accelerations

$$\boldsymbol{a}(t) = \frac{1}{m} \frac{\partial E(\boldsymbol{R}(t))}{\partial \boldsymbol{r}}$$

2) Update velocities


$$v(t + dt/2) = v(t - dt/2) + a(t) \cdot dt$$

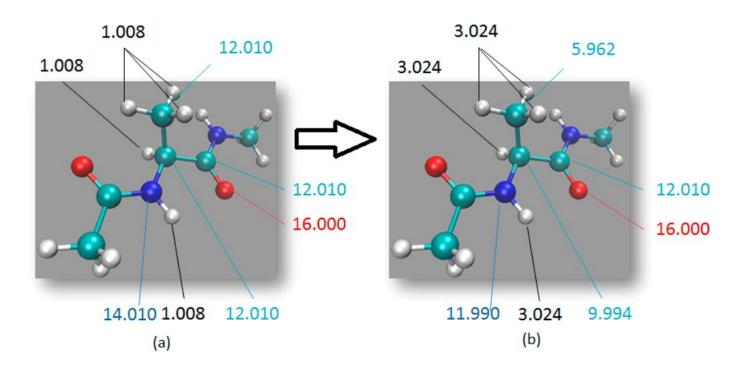
$$a(t) = \frac{v(t + dt/2) - v(t - dt/2)}{dt}$$


1) Update positions

$$r(t+dt) = r(t) + v(t+dt/2) \cdot dt$$

$$v(t+dt/2) = \frac{r(t+dt) - r(t)}{dt}$$

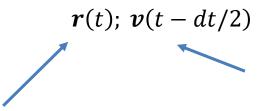
Time Step


- > The time step size is usually taken as 1/10 of the fastest motions.
- > The fastest motions are X-H vibrations (higher PES curvature, light atom (hydrogen)).
- \triangleright Then, the typical size of the integration step is 1 fs (10⁻¹⁵ s)

Strategies how to increase the integration time step:

- remove the fastest motions by the constraining X-H distances, which allows a 2-fs step size
 - > SHAKE, RATTLE, SETTLE, LINCS algorithms
- > in addition, constrain valence angles (mathematically too complex, not use)
- hydrogen mass repartitioning (up to 4 fs)
- multiple time-step integrators
 - computationally cheap short-range forces (shorter integration time step)
 - computationally expensive long-range forces (longer integration time step)

HMR - Hydrogen Mass Repartitioning


Since the molecular dynamics uses the classical physics, each degree of freedom is thermalized to $\frac{1}{2}k_BT$, which is independent to atom masses.

Hopkins, C. W.; Le Grand, S.; Walker, R. C.; Roitberg, A. E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. *J. Chem. Theory Comput.* **2015**, *11* (4), 1864–1874. https://doi.org/10.1021/ct5010406.

Initial Conditions, Equilibration

For integration of EM, we need **initial geometry and velocities**:

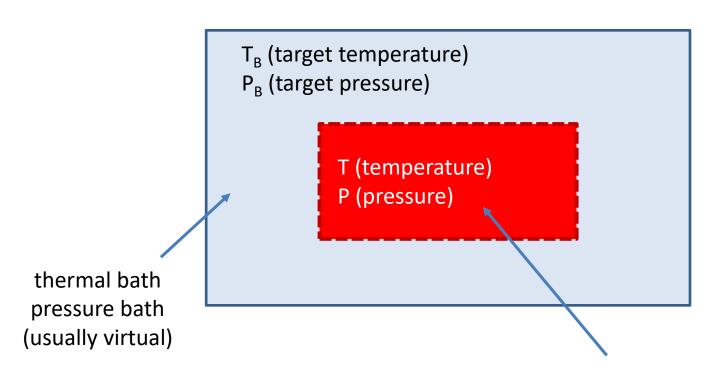
velocities can be generated randomly to satisfy Maxwell-Boltzmann distribution for given temperature

initial geometry (structure) of model

The initial geometry of models derived from experimental structures (X-RAY, NMR, CryoEM, etc.) is usually of low quality.

Equilibration:

The aim of the equilibration is to bring model to desired thermodynamic state (temperature, pressure, density, etc.).


temperature adjustment density adjustment

Equilibrated model

production dynamics

analysis

Thermostats and Barostats

simulated system

At equilibrium:

$$T = T_B$$

$$T = T_B$$

 $P = P_B$

The capital P (pressure) is employed to avoid ambiguities with the small p (momentum).

Thermostats

Equipartition principle:

mean kinetic energy

$$\frac{3N-c}{2}k_BT=\langle E_k\rangle=\left|\sum_{i=1}^N\frac{1}{2}m_i\boldsymbol{v}_i^2\right|$$
 degrees of freedom (DOF) (c - constrained DOF) temperature

The temperature can be controlled by a thermostat:

- weak coupling thermostat, Berendsen thermostat
 - > simple, incorrect ensemble
 - > temperature is controlled by velocity scaling
 - dangerous to use for simulations in vacuum
 - susceptible to various artefacts (flying ice cube, etc.)
- Langevin thermostat (stochastic, correct ensemble)
 - it thermalizes each degree of freedom by random collisions
- Nosé-Hoover barostat (correct ensemble)

Barostats

Virial theorem (Clausius 1870):

$$2\langle E_k \rangle = -\sum_{i=N}^N \langle \boldsymbol{F}_i \boldsymbol{r}_i \rangle$$

the virial (it reflects potential energy)

NpT ensemble (ideal gas model):

$$2\langle E_k \rangle = -3PV - \sum_{i=N}^{N} \langle \mathbf{F}_i \mathbf{r}_i \rangle \qquad \qquad P = \frac{1}{V} \left[Nk_B T - \frac{1}{3} \sum_{i=N}^{N} \langle \mathbf{F}_i \mathbf{r}_i \rangle \right]$$
pressure

The pressure can be controlled by a barostat:

from equipartition principle

- weak coupling barostat (simple, incorrect ensemble)
- Monte-Carlo barostat (stochastic, correct ensemble)
- Nosé-Hoover barostat (correct ensemble)

the pressure change is achieved by changing the size of the simulation box.

Output from MD

actual temperature (K) and pressure (atm) (they DO NOT represent thermodynamical properties)

```
300.74
NSTEP =
            60000
                     TIME (PS)
                                 3970719.913
                                                TEMP (K)
                                                                       PRESS =
                                                                                 -209.4
                                            14401.7354
             -68239.6682
                                                         EPtot
                                                                            -82641.4035
Etot
                            EKtot
                 225.2198
                            ANGLE
                                              498.4282
                                                          DIHED
                                                                               712.6121
BOND
                                            -4287.9441
1 - 4 \text{ NB} =
                 259.0139
                             -4 EEL =
                                                         VDWAALS
                                                                             10154.5260
                                                0.0000
                                                         RESTRAINT
             -90203.2595
                            LHBOND
                                                                                 0.0000
EFLEC
                6899.5998
                                              977.8787
EKCMT
                            VIRIAL
                                                         VOLUME
                                                                            238531.9588
                                                         Density
                                                                                 1.0214
```

the same property, which is the actual kinetic energy, expressed in different units

Output from MD, cont.

Thermostat: T = 300 K (weak coupling)
Barostat: p = 1 atm (weak coupling)

thermodynamic temperature (K) and pressure (atm)

```
AVERAGES
                  OVER
                                                        299.90
                                            TEMP(K)
         5000000
                   TIME (PS)
                            = 3990599.911
                                                                PRESS =
            -68232.2253
                                        14361.2461
Etot
                         EKtot
                                                    EPtot
                                                                    -82593.4714
               248.6326
                                          517.2225
BOND
                         ANGLE
                                                    DIHED
                                                                        724.2102
1-4 NB =
               253.7846
                         1-4 EEL =
                                        -4299.0145
                                                    VDWAALS
                                                                     10259.0679
            -90297.3769
EELEC
                         EHBOND
                                            0.0000
                                                    RESTRAINT
                                                                          0.0023
EAMBER (non-restraint)
                             -82593.4736
EKCMT
              6859.7668
                         VIRIAL
                                         6849.2815
                                                    VOLUME
                                                                     238422.2094
                                                    Density
                                                                          1.0219
        LUCTUATIONS
         5000000
                   TIME(PS) = 3990599.911
                                                          1.53
                                                                PRESS =
NSTEP =
                                            TEMP(K)
                17.0060
                                           73.4906
Etot
                         EKtot
                                                    EPtot
                12.9980
                         ANGLE
                                           16.9666
                                                    DIHED
                                                                         10.9737
BOND
1-4 NB =
                 5.9275
                         1-4 EEL =
                                           19.2799
                                                    VDWAALS
                                                                        126.9605
EELEC
               159.5253
                                            0.0000
                                                    RESTRAINT
                                                                          0.0359
                         EHBOND
       (non-restraint)
                                  75.3871
EAMBER
EKCMT
                57.0484
                         VIRIAL
                                          788.8336
                                                                        174.8435
                                                    VOLUME
                                                                          0.0007
                                                    Density
```