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Free Energy Calculations
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Free Energy
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Free energy is related to 
equilibrium and rate constants.

Knowledge of free energy allows to quantify:
• chemical reactivity (e.g. enzymatic activities)
• thermodynamics (e.g. binding affinities)
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Free Energy Calculations

9th November 2010, Bratislava -5-
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Density of state (probability)
It can be calculated from molecular
dynamics or Monte Carlo
simulations, but …

reaction coordinate
collective variables
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Sampling Problem

d1

10 ns long simulation is able to discover

free energy landscape with depth only

about 3 kcal/mol.
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Free Energy Calculations

Available methods:

➢constrained dynamics 

system is biased by constraining reaction coordinate

➢adaptive biasing force

system is biased by force which is opposite to potential of mean force

➢umbrella sampling

system is biased by restraining reaction coordinate

➢metadynamics

system is biased by Gaussian hills, which fill free energy landscape  

A system has to be biased achieving efficient sampling in the region of interest. We

need to know how to obtain the unbiased free energy from such biased simulation.
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Free Energy Calculations

➢Alchemical Transformation

one system is slowly changed to another one (changes are very often unrealistic, 

atoms are created and/or annihilated)

what: mostly changes in binding free energies:

how: thermodynamic integration (TI), free energy perturbation (FEP)

➢ Potential of Mean Force

system is changed along reaction coordinate

what: free energy of conformation changes, reaction free energies

how: constrained dynamics, adaptive biasing force, umbrella sampling,

metadynamics, steered dynamics

➢ End-points Methods

free energy of every state is calculated independently

what: mostly binding free energies

how: MM/XXSA; XX=PB, GB, LRA
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Metadynamics
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Metadynamics, theory
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Free energy landscape is filled by Gaussian hills.
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Equations of motion MTD history potential

Equations of MTD motion (direct approach)
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Metadynamics, example

DIS (distance)

hill height 0.01 kcal/mol, width 0.5 x 0.5 Å
MTD frequency 500 fs
2 ns long simulation

300 K, vacuum, GAFF force field, time step 0.5 fs
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Constrained Dynamics
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Constrained Dynamics, theory
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Reaction coordinate is fixed (constrained) at the value of interest.
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Equations of motion Constraint condition

method of Lagrange multipliers

Equations of constrained motion

= Lagrange multipliers

holonomic constraint

kλ
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Constrained Dynamics, theory
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Derivative of unbiased free energy is also given by (concise formulation):
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Final free energy is obtained by numerical integration:

second derivatives are not required
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Constrained Dynamics, example

Small numbers are calculated by averaging big numbers.

70 points

d177 points,  0.1 Å

Method B: 5 ps shift, 5 ps equilibration, 20 ps production

300 K, vacuum, GAFF force field, time step 1 fs / 0.5 fs
DIS (distance)
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Constrained Dynamics, example

d177 points,  0.1 Å

Method B: 5 ps shift, 5 ps equilibration, 20 ps production

300 K, vacuum, GAFF force field, time step 1 fs / 0.5 fs
DIS (distance)
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Adaptive Biasing Force
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ABF, theory
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Movement along reaction coordinate is the subject of diffusion process.

Equations of motion Free energy and force along RC

Equations of ABF motion
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force along reaction coordinate is subtracted 
from the system
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ABF, theory
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Free energy is given by:

it contains the second derivatives of reaction 
coordinate if treated analytically

equation is solved numerically

Procedure:

• range of reaction coordinate is divided into bins

• a value of reaction coordinate determine a bin

• a contribution to the derivative of free energy is accumulated 

into a bin

• ABF force calculated from accumulated free energy derivative 

is applied to the system 

• accumulated free energy derivative very rapidly converges
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ABF, example

DD

(difference of 

distances)

 range from -6.5 to 6.5 Å, 130 bins

2 ns long simulation

300 K, vacuum, GAFF force field, time step 1 fs

Show movie?
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Multiple Walkers Approach

Server

Client 1 Client 2 Client 3

server collects information about free 

energy surface (FES) and redistributes it 

among clients

Applicable to: 

➢Metadynamics

➢Adaptive biasing force

Advantages: 

➢ Faster convergence

➢ Easy to implement

➢ Parallel scaling is almost linear

FES data are exchanged every N
update

MD steps

N
update

~ 500-1000 steps
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Multiple Walkers Approach

Two walkers
(from reactants and products)

One walker
(from reactants)

Nucleophilic substitution reaction (test case)
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Molecular Dynamics
and 

Reactions

9th November 2010, Bratislava -23-
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Description of Chemical Reactions

EVB X QM/MM X QM

theory precision

complexity, sampling problems

too complex for 
biomolecular systems

problem with boundaries
between QM and MM parts

requires
parametrizations

QM

MM QM

products

reactants
EVB
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CPMD
Car-Parrinello

Molecular Dynamics

9th November 2010, Bratislava -25-
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Method

Equations of motion:

fictitious mass of wavefunction
(ca 300-700 a.u. , typical value is about 600 a.u.

ions

wavefunction

constraints due to 
orthonormality of wavefunction
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CPMD versus BOMD
CPMD

• no SCF procedure
• motion of ions in time
• motions of wavefunction in time
• time step ~ 0.1 fs (5 a.u.)

• DFT only (in CPMD)
• hybrid functional possible but very slow
• dispersion correction available

• planewaves wavefunction (periodicity!}
• wavefunction quality is determined by cutoff (single value)
• pseudopotentials required (core electrons) 

BOMD

• SCF procedure
• motion of ions in time only
• wavefunction follows ions by SCF (BO)
• time step max ~ 1 fs
• gradients require very tight convergence of 
wavefunction optimization 


