C7800 Introduction to molecular modelling - seminar TSM Modeling of molecular structures

Section Modelling Programs for molecular modelling I

Petr Kulhanek

kulhanek@chemi.muni.cz

National Center for Biomolecular Research, Faculty of Science Masaryk University, Kotlářská 2, CZ-61137 Brno

Overview

VMD

http://www.ks.uiuc.edu/Research/vmd/

Visualization of (bio)molecules. Available for MS Windows, macOS, and Linux for free upon registration.

Avogadro

http://avogadro.openmolecules.net/wiki/Main_Page

Program for molecule building and visualization. Freely available for MS Windows, macOS, and Linux.

Functionality overview: https://www.youtube.com/watch?v=xdmLoBlLmqs

Nemesis

https://nemesis.ncbr.muni.cz/

Program for molecule building and visualization. Freely available for Linux.

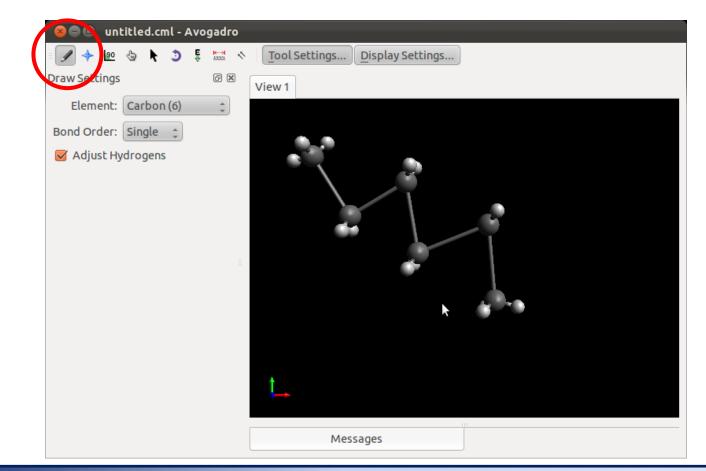
WOLF Cluster - GNOME Desktop

Model building

Program Avogadro

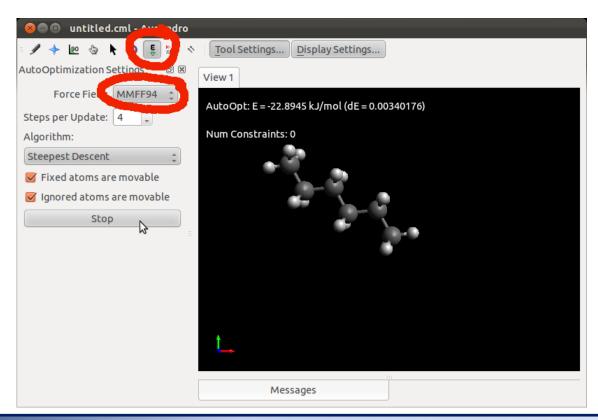
Starting Avogadro

How to start Avogadro?

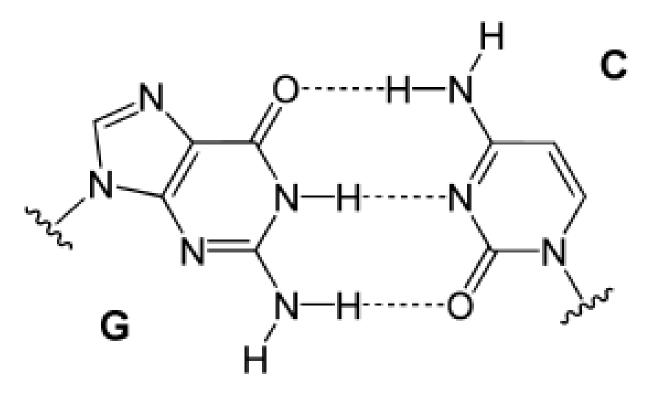

- Find Avogadro in standard applications
- Or open terminal and run Avogadro as a command (all small caps!!!)

\$ avogadro

- Or open terminal and run Avogadro from modules (not recommended)
 - \$ module add avogadro
 - \$ avogadro


Draft model

- In edit mode, you can draft a model.
- This model does not have proper bond distances and angles. It needs to be optimized before further use.


Model optimization

- Avogadro uses molecular mechanics (force field) for geometry optimization.
- For proper usage, the model must have correct topology with right bond orders.
- Force field methods are empirical. Therefore, it is necessary to select proper parametrization such as MMFF94.

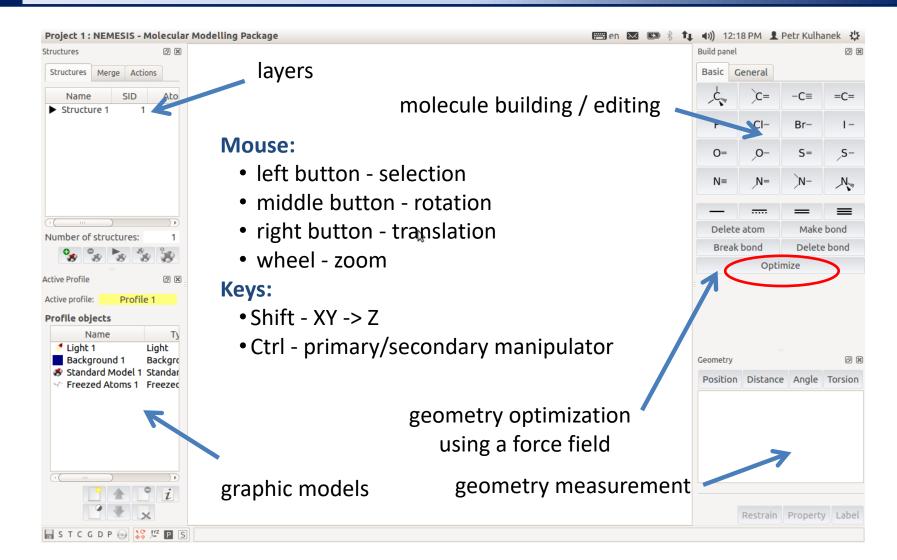
- 1. Step by step, create models of the following molecules:
 - methane
 - ethene, ethyne
 - benzene
 - adamantane
 - benzoic acid
 - trinitrotoluene
 - salicylic acid
 - optionally building C₆₀

1. Create a model containing G:C base pair, according to the scheme below. Use a hydrogen atom to saturate the free valences. For geometry optimization, use the MMFF94 force field.

https://en.wikipedia.org/wiki/Base_pair

Model building

Nemesis program

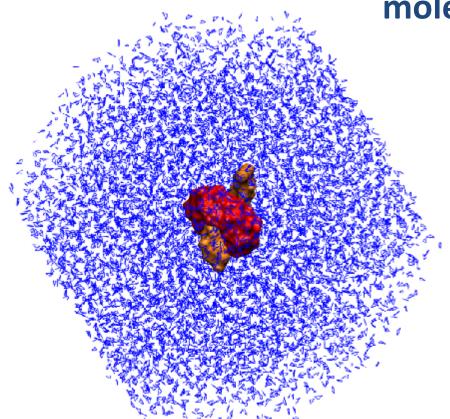

Starting Nemesis

How to start Nemesis?

Open terminal and run Nemesis from modules:

\$ module add nemesis \$ nemesis

Nemesis - Build Project



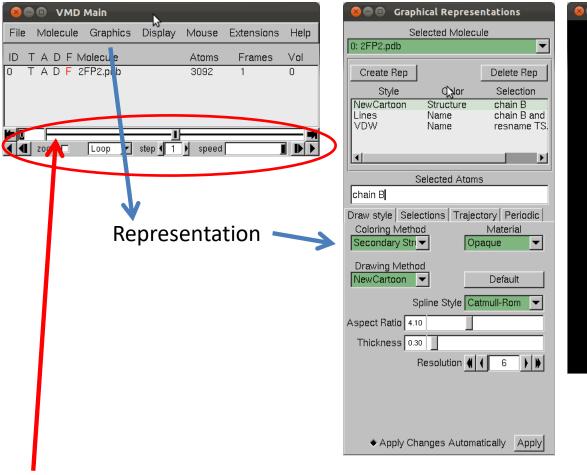
Force field settings for optimization: menu Geometry-> Optimizer Setup

- 1. Step by step, create models of the following molecules:
 - methane
 - ethene, ethyne
 - benzene
 - adamantane
 - benzoic acid
 - trinitrotoluene
 - salicylic acid

Visualization of molecular dynamics simulations

VMD program

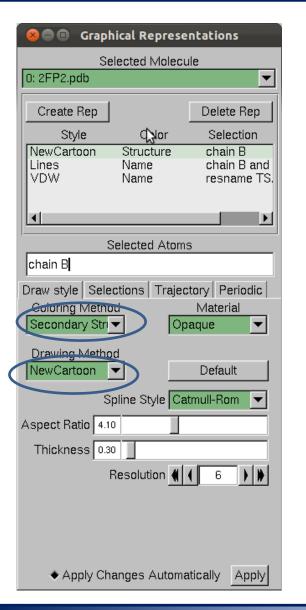
molecular dynamic simulation of a molecular switch


red - rotor orange - axis blue - water

Display simulation in VMD

Open terminal and run the following script

\$ ~kulhanek/start-vmd-3


VMD

😣 🗐 🔲 VMD 1.8.7 OpenGL Display

movement in time

VMD program - visualization

Create/Delete representation

Representation List double click - activate/deactivate

Selection (what part of model is visualized)

Coloring method and drawing method

VMD program - selection

Gr	aphical Re	epresen	tations	;
	Selected	Molecul	e	
0: 2FP2.pdb				•
Create Rep		[Delete Rep	
Style	¢	۶lor	Selection	
NewCartoor			chain B	
Lines	Name			
VDW	Name	3	resnr.	me TS.
				Þ
	0-1	-l & +		
	Selected	a Atoms		
chain B				
Draw style S	Selections	Traiect	orv Per	iodic
Coloring Me			Materia	
		One	aque 🔻	
Tocoondary		Tobe	iquo	
Drawing Me	ethod			
NewCartoor	1 -		Default	
	Spline St	yle Cati	null-Rom	
Aspect Ratio	4.10			
		- - -		
Thickness	0.30			
Inickness		ion 省 🕯	6	
Thickness		ion 🕊 📢	6	• •
Thickness		ion 🔌 📢	6	}
Thickness		ion <u> (</u> (6	}
Thickness		ion <u> (</u>	6	••
Thickness		ion <u> </u>	6	• •
				Apply

Selection for visualization (examples):

water - selects all water molecules resname X - selects a residue named X resid X - selects a residue with the number X not hydrogen - do not display hydrogen atoms

Examples:

resid 1 to 7 resid 8 9 10

- 1. How many atoms does the model contain?
- 2. How many units contains cucurbit[n]uril?
- 3. What happens to water molecules at the interface of the simulation box?
- 4. What functional groups contains the axis?
- 5. What is the total charge of the axis?
- 6. Try to visualize the model as it is shown on the page 15.