## Introduction to Computational Quantum Chemistry

Lesson 3: the Potential Energy Surfaces (PES)
(Prepared by Radek Marek Research Group)

## Potential Energy Surface

- The Potential Energy Surface (PES) is a mathematical function that gives the internal energy of a molecule as a function of geometrical modulations as it stretches, bends, torsions, breaks, etc.
The PES of a molecule is obtained by the total interactions of:
- nuclear-nuclear repulsion
- electron-electron interaction
- electron-nuclear attraction

The topology (surface) of the PES is dependent on what methods it is derived from

- Molecular Mechanics is based in some classical parameters and can provide approximate results.
- Quantum Mechanics is more accurate and exact and in principle and works for any molecule but computationally expensive.


## Geometry Description

| Coordinates | Notation | Degrees of freedom |
| :--- | :--- | :--- |
| Cartesian | $\mathrm{x}, \mathrm{y}, \mathrm{z}$ | 3 N |
| Spherical | $\mathrm{r}, \theta, \phi$ | 3 N |
| Internal | $\mathrm{R}, \mathrm{A}, \mathrm{D}$ | $3 \mathrm{~N}-6(3 \mathrm{~N}-5)$ |


(Prepared by Radek Marek Research Group)

## The Born-Oppenheimer Approximation

- the Born-Oppenheimer Approximations allows separation of electronic and nuclear degrees of freedom "simplifies things" even though they are coupled by the electron-nuclear potential energy $\mathrm{V}_{\mathrm{eN}}(\mathbf{r}, \mathbf{R})$.
Electrons are much lighter than the nuclei, thus with respect to electrons, the nuclei are almost stationary.
- fix the nuclei at some chosen configuration $\mathbf{R}_{\mathbf{a}}$
- solve for the motion of the electrons for this nuclear configuration, giving an electronic energy $\mathbf{E}_{\mathrm{e}}\left(\mathbf{R}_{\mathbf{a}}\right)$
- repeat for other nuclear configurations $\mathbf{R}_{\mathrm{b}}$ of interest, building up a Potential Energy Surface $\mathbf{E}_{\mathrm{e}}\left(\mathbf{R}_{\mathrm{b}}\right)$.


## PES of a Diatomic Molecules

- can be visualized as function of energy versus internuclear distance (single internal coordinate)
- Morse potential:

$$
\begin{equation*}
V(r)=D_{e}\left(1-e^{-a\left(r-r_{e}\right)}\right)^{2} \tag{1}
\end{equation*}
$$

where

- $D_{e}$, is the depth of potential well
- $a$, controls the width of the potential
- $r$, is the internuclear separation
- $r_{e}$, is the equilibrium distance



## PES of Multiatomic Systems

－impossible to visualize more than 2 variables and 1 energy dimension
－cuts from multidimensional space（hyperspace）where all other degrees of freedom are kept fixed


## Important Points on the PES

- stationary points:

$$
\begin{equation*}
\frac{\partial E}{\partial q_{i}}=0 \tag{2}
\end{equation*}
$$

- local minimum:

$$
\frac{\partial^{2} E}{\partial q_{i}^{2}}>0 \text { for all degrees of freedom }
$$

- $n^{\text {th }}$ order saddle point:

$$
\frac{\partial^{2} E}{\partial q_{i}^{2}}<0 \text { for } \mathrm{n} \text { degrees of freedom }
$$

## Zero-Point Energy (ZPE) Corrections

- Vibrational corrections for OK (ground vibrational state)
- "Cancel out" for energy differences



## Zero-Point Energy (ZPE) Corrections

- Vibrational corrections for OK (ground vibrational state)
- "Cancel out" for energy differences



## Zero-Point Energy (ZPE) Corrections

- Vibrational corrections for OK (ground vibrational state)
- "Cancel out" for energy differences



## Hessian Index

- a calculated optimized geometry needs a vibrational analysis to verify its location in the PES via the Hessian index
- the Hessian index is the number of negative eigenvalues of the force constant matrix (i.e. imaginary frequencies). For a stationary point, this corresponds to the number of internal degrees of freedom along which that point is a potential energy maximum. The Hessian index is:
- 0 for minima
- 1 for transition states
- > 1 for higher-order saddle points


## Relaxed vs Rigid PES

- there are two types of mapping the PES namely Rigid and Relaxed scanning
- RIGID, means scanning the energetics of the molecule by only changing specific angle while all the bond lengths at their fixed position
- RELAXED, means scanning the energetics while holding the dihedral angle constant at a series of values, and relaxing the remainder of the coordinates.
- the second method (RELAXED Scan) will give us the true minimum energy path while the first method is merely an approximation to the minimum energy path.


## ACTIVITY

- Activities related to Potential Energy Surface scans will be included in
Lesson 7 : PES Scan, Reaction Coordinates, and Transition State Search


## Introduction to Computational Quantum Chemistry

## END

