Introduction to Computational Quantum Chemistry

Lesson 06: Frequency Analysis (IR Spectra)

(Prepared by Radek Marek Research Group)

Lesson 06 - Frequency Analysis (IR Spectra)

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 … 釣 Q @

Quick Review, Molecular Motions

- despite the typical graphical display of molecular structures, molecules are highly flexible and undergo multiple modes of motion over a range of time-frames
- motions involve rotations, translations, and changes in bond lengths, bond angles, dihedral angles, ring flips, methyl bond rotations.
- infrared (IR) spectroscopy: based on IR absorption by molecules as undergo vibrational and rotational transitions.

Quick Review, Infrared (IR) spectroscopy

• wide range of types of electromagnetic radiation in nature.

・ロト・団ト・ヨト・ヨー ろんの

(Prepared by Radek Marek Research Group)

Quick Review, Infrared (IR) spectroscopy

- IR radiation is in the range of $12,800 10cm^{-1}$ or $\lambda = 0.78 1000\mu m$
 - rotational transitions have small energy differences $\leq 100 cm^{-1}$, $\lambda > 100 \mu m$
 - vibrational transitions occur at higher energies
 - rotational and vibrational transitions often occur together
- typical IR spectrum for Organic Molecule

(Prepared by Radek Marek Research Group)

Quick Review, Infrared (IR) spectroscopy

potential energy resembles classic Harmonic Oscillator

(Prepared by Radek Marek Research Group)

Lesson 06 - Frequency Analysis (IR Spectra)

IR Active Vibrations

 in order for molecule to absorb IR radiation: vibration at same frequency as the source and also, must have a change in its net dipole moment as a result of the vibration

CO₂: 3(3)-5 = 4 modes

(Prepared by Radek Marek Research Group)

Lesson 06 - Frequency Analysis (IR Spectra)

э.

(*) * (*) *)

Activity I: Calculation of Vibration Frequencies

- using Gaussian, performed calculations on these three molecules:
 - Toluene, 2-Propanone and 2-Propanol
- Geometry Optimization and Frequency Calculations using:
 - HF/6-31G(d) for Opt and Freq
 - B3LYP/6-31G(d) for Opt and Freq
 - MP2/6-31G(d) for Opt and Freq

(Prepared by Radek Marek Research Group)

Activity II: Visualization of In Silico IR Spectra

- open Gabedit
- under Tools Menu open IR Spectrum and read from Gaussian output file
- you will be redirected to XY GabeditPlot, chose Lorentzian lineshape and set the wavenumber to cm^{-1} .
- the partial set up should something look like this:

- na (?

(Prepared by Radek Marek Research Group)

Activity II: Visualization of In Silico IR Spectra

- open the Display Vibration menu
 - right click and go to Animation > Vibration > Read a Gaussian output file
 - you can see the individual **Frequencies** and **IR Intensities** as well as **Play** the actual vibrations on the screen.
- compare the *In Silico* quantitative values and the IR spectra to the experimental spectra presented in the following slides
- how are the three methods [HF, DFT(B3LYP), and MP2] differ when it comes to producing the molecular vibrational values? relative to the experiement which method is accurate?

Toluene IR Spectra

・ロト・日本・ (日本・日本・日本・日本・日本・日本・日本・日本・日本・日本)

(Prepared by Radek Marek Research Group)

2-Propanone IR Spectra

・ロト・日本・日本・日本・日本 今日・

(Prepared by Radek Marek Research Group)

2-Propanol IR Spectra

・ロト・団ト・ヨト・ヨー ろんの

(Prepared by Radek Marek Research Group)

Assignment - Further Exploration/Meditation ;)

- using the each respected optimize geometries of the previous job performed calculations on these three molecules:
 - HF/6-311G(d,p) for Opt and Freq
 - B-LYP/6-311G(df,p) for Opt and Freq
 - MP2/6-311G(d,p) for Opt and Freq
- compare the results with the experimental IR Spectra
- is there an improvement?
- are the results method dependent or basis set dependent?

Conclusions

- it's been an established fact that the computed quantum chemical harmonic vibrational frequencies are typically larger than the values observed experimentally.
 - a major source of this disagreement is the neglect of anharmonicity effects in the theoretical treatment.
 - errors also arise because of incomplete incorporation of electron correlation and the use of finite basis sets.
- thus one be careful when it comes to choosing a method of calculation and basis sets while balancing with the size of the molecule being considered.
- several studies suggested that a scaling factors for the vibrational frequencies of a particular theoretical procedures must be applied and it gave improve results.

END

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

(Prepared by Radek Marek Research Group)