Introduction to Computational Quantum Chemistry

Lesson 07: Reaction Coordinates and Transition State Calculations

(Prepared by Radek Marek Research Group)

Lesson 07 - Reaction Coordinates and Transition State Calculations

э

REVIEW: Potential Energy Surface

- the PES of a molecule is obtained by the total interactions of:
 - nuclear-nuclear repulsion
 - electron-electron interaction
 - electron-nuclear attraction
- important Points on the PES
 - stationary points:

$$\frac{\partial E}{\partial q_i} = 0 \tag{1}$$

local minimum.

$$\frac{\partial^2 E}{\partial q_i^2} > 0 \quad \text{for all degrees of freedom} \tag{2}$$

• *n*th order saddle point:

$$\frac{\partial^2 E}{\partial q_i^2} < 0 \quad \text{for n degrees of freedom} \tag{3}$$

(Prepared by Radek Marek Research Group)

Lesson 07 - Reaction Coordinates and Transition State Calculations

글 > < 글 >

REVIEW: Potential Energy Surface (Cont.)

- a two-dimensional cut from a multidimensional PES illustrates one direction view of the reaction coordinates
- the energy differences of TS R is the activation energy while the P R is the reaction energy

 however, these are only stationary points on a much larger potential energy surface (PES). The actual landscape of this surface can also be explored to see how the various stationary points connect.

(Prepared by Radek Marek Research Group)

Potential Energy Scan

- it is often useful to scan the potential energy surface (PES), optimizing all other degrees of freedom for each particular value of the scanned variable(s).
- possible to adjust distances as well as atomic and dihedral angles

(Prepared by Radek Marek Research Group)

Potential Energy Scan, Cont.

- PES scan may provide a rough estimate of a pathway between reactants, TS, and products, assuming the coordinate(s) for the scan has been chosen wisely
- PES scan is often used in development of classical force fields

Intrinsic Reaction Coordinate (IRC)

- TS (transition state), the Hessian needs to display the required number of negative eigenvalues
- it is also necessary to confirm the TS connections to both sides (reactants and products).

(Prepared by Radek Marek Research Group)

Intrinsic Reaction Coordinate (IRC), Cont.

- the Intrinsic Reaction Coordinate (IRC) is the minimum energy reaction pathway (MERP) in mass-weighted cartesian coordinates between the TS to its reactants R and products P.
- the molecule takes moving down the product and reactant valleys with zero kinetic energy.
- the Gonzalez-Schlegel method for following the coordinate can be used in Gaussian using the IRC keyword, latest version using (HPC algorithm).

< ロ > < 同 > < 回 > < 回 > < 回 > <

- mapping reaction coordinates and search of transition state (TS)
 - manual optimizations search for REACTANTS, TS, PRODUCTS (with aid from PES Scan)
 - advance methods such as QST2,QST3, etc

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → 今へ⊙

(Prepared by Radek Marek Research Group)

ACTIVITY 1: PES SCAN

- rotational transition state in hydrogen peroxide (H-O-O-H) using Gaussian
 - (MANUAL) frozen optimization per angle:

 the last line of the Z-Matrix describes a value of 0.0 degree for the H/O/O/H dihedral angle d4, the tailing character F indicating that this variable is frozen and **not to be varied** during the geometry optimization, then change it from 0.0 to 180

(Prepared by Radek Marek Research Group)

Lesson 07 - Reaction Coordinates and Transition State Calculations

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

ACTIVITY 1: PES SCAN, Cont.

• (FULL SCAN) can be achieved in a single job:

- initial value of 0.0 degree for the H/O/O/H dihedral angle d4 but also specifies a scan of 18 steps, is varied by +10.0 degrees.
- in order to avoid problems caused through changes in the point group along the pathway, the nosymm keyword is added.

(Prepared by Radek Marek Research Group)

ACTIVITY 1: PES SCAN, Cont.

- examine the output file and look for the keyword "Summary of Optimized Potential Surface Scan", you can see the energy eigenvalues as d4 changes
- add module gaussview
- open the file using gv {filename}
- go to menu bar **Results** > scan, Energy and RMS values are presented
- you can visualize the molecular movements by clicking the animate play button

ACTIVITY 2: Reaction Coordinate and TS Search

- we will study a classic SN₂ reactions (known to have double well potentials), using Gaussian.
- SN₂ reaction: $Br^- + CH_3CI \rightarrow CI^- + CH_3Br$
 - use B3LYP functional, the 6-31+G(d) basis set for all atom
 - first perform a geometry Optimization and Freq for all Reactants and Products
 - for an initial guess of transition state structure (TS), obtain it from PES scan by varying the both distances of Br and CI, refer to this manual: https://gaussian.com/scan/
 - NOTE: to save time, use the coordinates provided in the next page, this structure is a good starting point for a PES SCAN
 - refer to this manual: *https* : //gaussian.com/scan/

▲口▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

(Prepared by Radek Marek Research Group)

ACTIVITY 2: Reaction Coordinate and TS Search

 perform your SCAN from this structure (fucos on B1 and B2) bond lengths CI 1 B1 Br 1 B2 2 A2 H 1 B3 2 A3 3 D3 H 1 B4 2 A4 3 D4 H 1 B5 2 A5 3 D5 variables: B120901 B2 2.0 9 0.1 A2 179.13318 B3 1.06210 A3 89.25624 D3 135.20467 B4 1.06224 A4 90.30745 D4 352 54852 B5 1.08241

A5 91.90132 D5 243.91238

(Prepared by Radek Marek Research Group)

Lesson 07 - Reaction Coordinates and Transition State Calculations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

ACTIVITY 2: Reaction Coordinate and TS Search, *Cont.*

- once you found a good TS candidate, be sure it has strongest imaginary frequency among others that refers to the bond breaking/forming of the Br ··· C ··· CI, that's why it's necessary to perform a preliminary FREQ calculation
- if it's viable, proceed to Transition State Optimization
- for Transition State (TS) minimization use #P B3LYP/6-31G(d) opt(TS,ModRedundant,noeigentest) nosymm freq
- the option above only calculate freq once on the initial structure (calcfc), freq calculation for every step is also available (CalcAll) but is not typically necessary for this simple system

▲ロト▲聞ト▲臣ト▲臣ト 臣 のへで

(Prepared by Radek Marek Research Group)

ACTIVITY 2: Reaction Coordinate and TS Search, *Cont.*

- after a successful TS Optimization, open the structure and examine the frequencies using Gabedit or Avogadro, if the frequencies are okay, you now got a Transition State Structure
- use the optimize TS structure and proceed with IRC calculation for the confirmation #P B3LYP/6-31G(d) scf=(tight,direct) int=finegrid IRC(calcfc,maxpoints=500,maxcyc=500,stepsize=10)
- by default IRC run examines every direction, you can also chose specific directions as Forward and Reverse options

• refer to this manual: *https://gaussian.com/irc/*

(Prepared by Radek Marek Research Group)

ACTIVITY 2: Reaction Coordinate and TS Search, *Cont.*

- once you have successful IRC calculation, open
 Gaussview for visualization
 - open the file using gv {filename}
 - go to menu bar Results > IRC, it allows you to view Total Energy and RMS Gradient along IRC values are presented
 - you can visualize the molecular movements by clicking the animate play button

ASSIGNMENT

• This process concerns the proton transfer in malonaldehyde, find the transition state geometry:

 use DFT methods PBE, B3LYP, and then try MP2. Be sure to use cc-pVDZ basis set. Verify your obtained transition state geometry.

(Prepared by Radek Marek Research Group)

END

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

(Prepared by Radek Marek Research Group)