Introduction to Computational Quantum Chemistry

Lesson 9: Response Properties: NMR

(Prepared by Radek Marek Research Group)

- widely used structure determination method
- uses very high magnetic fields to probe magnetically active nuclei
- typical nuclei: ¹H, ¹³C, ¹⁵N, ³¹P
- each type of nucleus gives specific signal in spectrum
- position and shape of the signal is given by electronic and nuclear structure surrounding the nucleus

Properties that can be obtained

- isotropic Chemical Shifts
- chemical Shielding Tensors
- J-coupling
- g and A-tensors (EPR, paramagnetic NMR)

(Prepared by Radek Marek Research Group)

In Silico NMR Properties

- calculated NMR atomic properties are very sensitive to:
 - chosen geometry
 - wavefunction (tighten convergence criteria, if possible)
 - solvent effects/crystal effects (especially exchangeable moieties)
 - dynamic effects

(Prepared by Radek Marek Research Group)

Energy Levels $(\alpha - \beta)$

- difference between states is $\Delta E = \gamma \hbar B_0 = -\gamma \omega$
- where:
 - γ is the magnetogyric ratio of a nucleus
 - h is Planck's constant
 - B₀ is the external magnetic field
 - ω is the Larmor precession frequency
- small energies for excitations perturbation to the wavefunction

•
$$\Delta E = \gamma \hbar (1 - \sigma) B_0 = -\gamma \omega$$

- magnetic field felt by the nucleus is $(1 \sigma) * B_0$ as a result of chemical shielding σ
- difference in frequency of bare nucleus and nucleus under is:

•
$$\sigma(ppm) = 10^6 * (\nu_{nuc} - \nu_{com}) / \nu_{nuc}$$

chemical shift:

•
$$\delta(ppm) = 10^6 * (\sigma_{ref} - \sigma_{sample})$$

(Prepared by Radek Marek Research Group)

Lesson 09 - Response Properties: NMR

э.

(*) * (*) *)

Chemical Shift Anisotropy

- IUPAC convention:
 - σ₁₁ ≥ σ₂₂ ≥ σ₃₃
 σ₁₁: direction of least shielding, σ₃₃: direction of highest shielding

• the average of these is the "isotropic" value

(Prepared by Radek Marek Research Group)

Lesson 09 - Response Properties: NMR

э.

A B > A B >

Isotropic Tumbling

- due to fast tumbling in solution, the shielding gets isotropically distributed
- in solid state the anisotropy is reduced by magic angle spinning (MAS)

(Prepared by Radek Marek Research Group)

Lesson 09 - Response Properties: NMR

Ξ.

イロト イヨト イヨト イヨト

Chemical shift (δ)

 difference between the shielding of nucleus under investigation and nucleus in reference compound:

•
$$\delta(ppm) = 10^6 * (\sigma_{COM} - \sigma_{STD})/(1 - \sigma_{STD})$$

- In Silico Methods
 - improved results with climbing Jacob's ladder (DFT and ab initio)
 - always try to use as high basis set as possible
 - STO are superior to GTO
 - make sure you wavefunction is well converged
 - increase the SCF convergence criteria
 - calculate the chemical shifts against well-behaving reference

(Prepared by Radek Marek Research Group)

ACTIVITY I - Acetic Acid

- use the series of optimize geometries provided (Acetic Acid)
- for NMR calculation your input files must include:
 - b3lyp 6-311++g(d,p) method
 - tighten the SCF convergence to 10⁻⁸
 - D3 dispersion correction
 - ultrafine integration grid
 - PCM water solvation model
 - calculation of only *J*-couplings for nonoxygen atoms of acetic acid (see documentation of NMR in Gaussian, do NOT calculate for dimer)

Reference Compound

good reference from computational point of view:

- small and symmetric
- rigid molecule (elimination of dynamic effects)
- only electrostatic interactions with surroundings (elimination of charge transfer effects)

Benzene in Benzene

- use the very same setup as for acetic acid (except PCM), use "tight" convergence for optimization
- NOTE: $\delta^{13}C_{ref} = 127.83, \, \delta^{1}H = 7.15$

•
$$\delta_{com}(ppm) = \sigma_{ref} - \sigma_{com} + \delta_{ref}$$

▲口 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ◆ つんの

(Prepared by Radek Marek Research Group)

- compare the experimental values with predicted ones:
- ¹*H*: 2.08 and 11.7 ppm
- ¹³C: 20.0 and 180.0 ppm
- why some geometries give better results?

(Prepared by Radek Marek Research Group)

END

(Prepared by Radek Marek Research Group)