CG920 Genomics

Lesson 7

Protein Interactions in Gene Regulations

Jan Hejátko

Functional Genomics and Proteomics of Plants, CEITEC - Central European Institute of Technology And National Centre for Bimolecular Research,

Faculty of Science,

MUNI SCI

Masaryk University, Brno hejatko@sci.muni.cz, www.ceitec.eu

Literature

- Literature sources for Chapter 06:
 - Wilt, F.H., and Hake, S. (2004). Principles of Developmental Biology. (New York ; London: W. W. Norton).
 - Ainger, K., Avossa, D., Morgan, F., Hill, S.J., Barry, C., Barbarese, E., and Carson, J.H. (1993). Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes. J Cell Biol 123, 431-441.
 - Alberts, B. (1998). The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291-294.
 - Grefen, C., Stadele, K., Ruzicka, K., Obrdlik, P., Harter, K., and Horak, J. (2008). Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Molecular Plant 1, 308-320.
 - Hu, C.D., and Kerppola, T.K. (2003). Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21, 539-545.
 - Shahbabian, K., and Chartrand, P. (2012). Control of cytoplasmic mRNA localization. Cellular and molecular life sciences : CMLS 69, 535-552.
 - Van Leene, J., Witters, E., Inze, D., and De Jaeger, G. (2008). Boosting tandem affinity purification of plant protein complexes. Trends Plant Sci 13, 517-520.
 - Walter, M., Chaban, C., Schutze, K., Batistic, O., Weckermann, K., Nake, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., Harter, K., and Kudla, J. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40, 428-438.

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation
 - The tandem affinity purification (TAP-tag)
 - Yeast two-hybrid assay (Y2H)
 - Bimolecular fluorescence complementation (BiFC)
 - Membrane Recruitment Assay (MeRA)
- Practical use of methods for *in vivo* studies of protein interactions

- Functional importance of specific protein interactions
 - Most of the proteins in the cell exist in the form of complexes which may further interact with each other
 - Proteasome
 - protein complex responsible for the degradation of obsolete proteins in the cell

The importance of protein interactions

Proteasome

Consisting of a core, also being designated as 20S and regulatory portions (19 or 11S) Allows targeted degradation of proteins labelled by a specific marker small polyppetide (76 aa) called ubiquitin 20S & 26S PROTEASOME ATPases S61 Base Lid b particle ubiguitination 26S proteasome folded protein 19S Regulator 20S Core 26S Proteasome

Proteasome –targeted proteolysis

- Functional importance of specific protein interactions
 - Chromatin structure

- Functional importance of specific protein interactions
 - Chromatin structure
 - Regulation of transcription

Initiation of Transcription

Multifactorial Promoters Control

ProENDO16:REPORTER (sea urchin)

Multifactorial Promoters Control

- Functional importance of specific protein interactions
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization

mRNA localization

Importance of mRNA localization

- Control over spatiotemporal localization of gene product (protein)
 - Asymmetric cell division during development
 - Embryo polarization

Shahbabian and Chartrand, 2012

mRNA localization

Role of mRNA localization

- Attenuating the expression of potentially toxic proteins
 - Localization of expression of MYELIN BASIC PROTEIN (MBP) into myelination regions of nerve cells

Ainger et al., 1993

mRNA localization Mechanisms

Diffusion and entrapment of mRNA

Shahbabian and Chartrand, 2012

- During the early stages of Xenopus oogenesis, Xcat-2 mRNA is restricted to a specific structure in the cytoplasm called the mitochondrial cloud (MC, Balbiani body)
- MC movement is partly dependent on the depolymerization of microtubuls (socalled "molecular motor")
- Entrapment on the vegetal pole via interaction of MC and ER

Xcat2 mRNA

mitochondrial cloud

mRNA localization

Mechanisms

Localized mRNA degradation

- During embryogenesis in Drosophila m. Hsp83 mRNA is localized at the posterior pole of embryo, similarly to NANOS mRNA
- Hsp83 mRNA is localized in the whole embryo, however, it is destabilized by cis elements both in 3'UTR (HDE) and in coding region (HIE).

- HIE elements are recognized by SMAUG protein, which mediates binding of degradation complex CCR4/POP2/NOT
- In the posterior pole the Hsp83 mRNA is protected from the effects of SMAUG by the so-called HPE element in 3'UTR; mechanism of this protection is still unknown

mRNA localization

Mechanisms

Active transport of mRNA

- Asymmetric Synthesis of HO1 (ASH1) is represor of the HO endonuclease in S. cereviseae; inhibition of HO results in inhibition of mating-type switching in daughter cells
- ASH1 mRNA is actively transported by "molecular motors" associated

Shahbabian and Chartrand, 2012

- ASH1 mRNA contains 4 cis elements (3 in the coding sequence and 1 in the 3'UTR), which are recognized by RNA-binding protein SHE2
- SHE2 interacts with SHE3, an adaptor protein, which links SHE2 to the molecular motor MYO4, which then binds to actin and allows transport of ASH1 mRNA into the daughter cell

- Functional importance of specific protein interactions
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - hnRNA splicing

- Functional importance of specific protein interactions
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - hnRNA splicing
 - Protein stability

Auxin Signalling

Jing and Strader, Plant Structural Biology, Hormonal Regulations (2018)

- Functional importance of specific protein interactions
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - hnRNA splicing
 - Protein stability
 - Signal transduction

Signal transduction

Pl and signal transduction

- through G protein phospholipase C
- Signalling cascades using cAMP

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - mRNA stability
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - mRNA stability
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation
 - The tandem affinity purification (TAP-tag)

PI *in vivo* Tandem affinity purification (TAP-tag)

- Isolation of protein complexes using recombinant proteins fused with two different binding domains tags
 - CBP-TEV-ProtA ProtA
 - calmodulin-binding protein (CBP)
 - IgG binding domains of protein A (ProtA)
 - TEV (tobacco etch virus) protease recognition site
 - Isolated protein complexes are separated using 1D ELFO and then identified by MS
 - Advantage: using two independent protein domains for affinity purification -> therefore high specifity

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - mRNA stability
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation
 - The tandem affinity purification (TAP-tag)
 - Yeast two-hybrid assay (Y2H)

Pl *in vivo* Yeast two-hybrid assay (Y2H)

- Isolation of protein complexes using recombinant proteins, each fused to a part of Gal4 transcription factor
 - One of the proteins (bait) fused to DNAbinding domain of Gal4 (Gal4-BD)
 - The other protein (prey) fused to activation domain of Gal4 (Gal4-AD)
 - Protein interactions enable reconstitution of binding domains with activation domain and triggers the expression of a reporter gene
 - Visual detection (blue color, LacZ)
 - Auxotrophic selection (growth on medium lacking histidine, His)
 - Method used for searching for interaction partners in expression libraries of individual organisms

B. One fusion protein only (Gal4-BD + Bait) - no transcription

C. One fusion protein only (Gal4-AD + Prey) - no transcription

D. Two fusion proteins with interacting Bait and Prey

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - mRNA stability
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation
 - The tandem affinity purification (TAP-tag)
 - Yeast two-hybrid assay (Y2H)
 - Bimolecular fluorescence complementation (BiFC)

Pl in vivo

Bimolecular fluorescence

complementation (BiFC)

- Protein interaction is detected by reassociation of the fluorescent protein
- Each of the potential interaction partners is fused to one of the subunits of the fluorescent protein, e.g. YFP
- In case of interaction, the fluorescence appears
- Apart from identification of the interaction, this method allows you to localize the interaction within the cell

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - mRNA stability
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation
 - The tandem affinity purification (TAP-tag)
 - Yeast two-hybrid assay (Y2H)
 - Bimolecular fluorescence complementation (BiFC)
 - Membrane Recruitment Assay (MeRA)

PI in vivo

Membrane Recruitment Assay (MeRA)

 Method for identification of interactions of cytoplasmic proteins with the membrane proteins

Membrane protein is fused with a fluorescecnt protein

Potential interaction partner is fused with another fluorescent protein with different emission spectra

In case of interaction the localization of the cytoplasmic protein is changed – it is colocalized on the membrane with the membrane protein

PI *in vivo* Membrane Recruitment Assay (MeRA)

Outline

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - mRNA stability
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation
 - The tandem affinity purification (TAP-tag)
 - Yeast two-hybrid assay (Y2H)
 - Bimolecular fluorescence complementation (BiFC)
 - Membrane Recruitment Assay (MeRA)
- Practical use of methods for *in vivo* studies of protein interactions

Signal Transduction via MSP

Is there any specificity in plant MSP?

Specificity of CKI1 signalling

43 Pekárová et al., Plant Journal (2011)

Specificity of CKI1 Signalling

□ Specificity of CKI1 interaction was confirmed in vitro

Pekárová et al., Plant Journal (2011)

Structure of CKI1_{RD}

Dynamics of CKI1_{RD}

CKI1_{RD} structural changes are associated with its binding specificity

.ЕС

Model Suggestion

Summary

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - mRNA stability
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation
 - The tandem affinity purification (TAP-tag)
 - Yeast two-hybrid assay (Y2H)
 - Bimolecular fluorescence complementation (BiFC)
 - Membrane Recruitment Assay (MeRA)
- Practical use of methods for *in vivo* studies of protein interactions

Discussion

Outline

Methods of gene expression analysis

- Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene

Transcriptional Fusion

- Identification and cloning of the promoter region of the gene
- Preparation of recombinant DNA carrying the promoter and the reporter gene (uidA, GFP)
- Preparation of transgenic organisms carrying this recombinant DNA and their histological analysis

GUS Reporter in Mouse Embryos

Outline

Methods of gene expression analysis

- Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene

Translational Fusion

 Preparation of a recombinant DNA carrying the promoter and the coding sequence of the studied gene in a fusion with the reporter gene (uidA, GFP)

Translational Fusion

- Preparation of transgenic organisms carrying the recombinant DNA and their histological analysis
- Compared to transcriptional fusion, translation fusion allows analysis of intercellular localization of gene product (protein) or its dynamics

Histone 2A-GFP in Drosophila embryo by PAM

PIN1-GFP in Arabidopsis

Translational Fusion

Outline

Methods of gene expression analysis

- Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases

Databases

Analysis of expression using Genevestigator (AHP1 and AHP2, Arabidopsis, Affymetrix ATH 22K Array)

Databases

Analysis of expression using Genevestigator (AHP1 and AHP2, Arabidopsis, Affymetrix ATH 22K Array)

Analysis of expression using ePlant

Databases

9

Analysis of expression using ePlant

Databases

Analysis of expression using Genevestigator (AHP1 and AHP2, Arabidopsis, Affymetrix ATH 22K Array)

Outline

Methods of gene expression analysis

- Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis

Expression Maps - RNA

MARKER LINES

IAA homeostasis

Brady et al., *Science*, 2007

MARKER LINES

polar auxin transport

MARKER LINES

IAA biosynthesis

Expression Maps - RNA

Nikos Karaiskos et al. Science 2017; science.aan 3235

Expression Maps - Proteins

Human Protein Atlas

Expression Maps - Proteins

 Human Protein Atlas (http://www.proteinatlas.org/)
 THE HUMAN PROTEIN ATLAS
 ABOUT & HELP

ARCH ? »			
			_
	Search	Clear	Fields »

protein_class:Transcription factors or chromosome:X

by the Knut & Alice Wallenberg foundation.

Stiffelse

Expression Maps - Proteins

Human Protein Atlas (http://www.proteinatlas.org/)

SUBCELLULAR LOCATION SUMMARY ? »			
	Main location(s)	Nucleus but	not nucleoli
	Additional location	s)	
	Staining summary	Localized to	the nucleus but excluded from the nucleoli.
	Reliability (APE)	🕞 High	
	Antibodies in assay	CAB039238,	CAB039239
	Show image »		
			MORE SUBCELL DATA
	NORMAL TISSUE & ORGAN SUMMARY ? »		
	Expression summa	Y Fractions of a	cells showed weak nuclear and/or cytoplasmic expression.
	Tissue specificity	Expressed in	11 out of 82 cell types
	Reliability (APE)	🛞 High	
	Antibodies in assay	CAB002973,	CAB039238, CAB039239
	Organ	No of cell Pro types	tein expression
	CNS (brain)	11	
	Hematopoietic (b	8 (boo	
	Liver and pancres	s 5	
	Digestive (GI-trad	t) 13	
	Providence of the second s	· · · · · · · · · · · · · · · · · · ·	
	Respiratory (lung	4	
	Respiratory (lung Cardiovascular	4	
	Show image > Respiratory (lung Cardiovascular Female tissues	4	
	Show image » Respiratory (lung Cardiovascular Female tissues Placenta	4 [1] 13 [2]	
	Show image > Respiratory (lung Cardiovascular Female tissues Placenta Male tissues	4 [1] 13 [2] 5 [
	Show image > Respiratory (lung Cardiovascular Female tissues Placenta Male tissues Urinary tract (kidi	4 [1] 13 [2] 5 [wey) 3 [
	Show Image > Respiratory (lung Cardiovascular Female tissues Placenta Male tissues Urinary tract (kidu Skin and soft tiss	4 (1 1 13 (2 (5 (14) (13) (13) (13) (13) (13) (13) (13) (13) (
	Show Image > Respiratory (lung Cardiovascular Female tissues Placenta Male tissues Urinary tract (kid Skin and soft tiss Endocrine tissues	4 1 1 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	
	Show image » Respiratory (lung Cardiovascular Female tissues Placenta Male tissues Urinary tract (kidi Skin and soft tiss Endocrine tissues	4 1 13 2 5 (ey) 3 Jes 14 3	

Outline

Methods of gene expression analysis

- Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis
- Quantitative analysis of gene expression
 - DNA and protein chips

Outline

- Methods of gene expression analysis
 - Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis
 - Quantitative analysis of gene expression
 - DNA and protein chips

DNA Chips

- Method, which provides quick comparison of a large number of genes/proteins between the test sample and control
- Oligo DNA chips are used the most

|--|

- There are commercialy available kits for the whole genome
 - company Operon (Qiagen), 29.110 of 70-mer oligonucleotides representing 26.173 genes coding proteins, 28.964 transcripts and 87 microRNA genes of *Arabidopsis thaliana*
 - Possibility of use for the preparation of photolithography chips facilitation of oligonucletide synthesis e.g. for the whole human genome (about 3,1 x 10⁹ bp) jit is possible to prepare 25-mers in only 100 steps, by this technique

Chips not only for the analysis of gene expression, but also for e.g. Genotyping (SNPs, sequencing with chips, ...)

Affymetrix ATH1 Arabidopsis genome array

Number of arrays	One
Number of sequence represented	>24,000 gene sequences
Feature size	18 µm
Oligonucleotide probe length	25-mer
Probe pairs/sequence	11
Control sequences	E. coli genes bioB, bioC, bioD. B. subtilis gene lysA. Phage P1 cre gene. Arabidopsis maintenance genes GAPDH, Ubiquitin, and Actin
Detection sensitivity	1:100,000*

DNA Chips

- For the correct interpretation of the results, good knowledge of advanced statistical methods is required
- It is necessary to include a sufficient number of controls and repeats
- Control of accuracy of the measurement (repeated measurements on several chips with the same sample, comparing the same samples analysed on different chips with each other)
- Control of reproducibility of measurements (repeated measurements with different samples isolated under the same conditions on the same chip – comparing with each other)
- Identification of reliable measurement treshold
- Finally comparing the experiment with the control or comparing different conditions with each other -> the result
 - Currently there's been a great number or results or various experiments in publicly accessible databases

treatment

Expression of 195M6T7 in response to chemical

Protein Chips

- Protein chips
 - Chips with high density containing 10⁴ proteins
 - Analysis of protein-protein interactions, kinase substrates and interactions with small molecules
 - Possibility of using antibodies more stable than proteins

Protein Chips

- Identification of proteins interacting with integrin α_{IIb}β₃ cytoplasmic domain of platelets
 - Expression of cytoplasmic part as a fusion peptide biotin-KVGFFKR
 - Analysis of binding to the protein chip containing 37.000 clones of *E. coli* expressing human recombinant proteins
 - Confirmation of interaction by pulldown analysis of peptides and by coprecipitation of whole proteins as well (e.g. chloride channel lcln)
 - Other use: e.g. in the identification of kinase substrates, when substrates are bound to the chip and exposed to kinases in the presense of radiolabeled ATP (786 purified proteins of barely, of which 21 were identified as CK2α kinase substrates; Kramer et al., 2004)

Lueking et al., 2005

Outline

Methods of gene expression analysis

- Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis
- Quantitative analysis of gene expression
 - DNA and protein chips
 - Next generation transcriptional profiling

Next Gen Transcriptional Profiling

Results of –omics Studies vs Biologically Relevant Conclusions

Transcriptional profiling yielded more then 7K differentially regulated genes...

Ddii et al., unpublished

gene	locus	sample_1	sample_2	status	value_1	value_2	log2(fold_change)	test_stat	p_value	q_value	significant
								1.79769e+3		0,00039180)
AT1G07795	1:2414285-2414967	WT	MT	ОК	(0 1,1804	1.79769e+308	08	6.88885e-05	1	lyes
	1.4556904 4559709	A/T	мт	OK		0.000502	1 70760 - 200	1.79769e+3	6 61004+ 06	4.67708e-	
KOT	1:4550691-4556706	VVI		UK		0,090503	1.797090+306	1 707600+2	0.01994e-00	0.00052506	yes
ATMLO14	1:9227472-9232296	wт	мт	ок		0 0.514609	1.79769e+308	08	9.74219e-05	0,00055500	5 ves
								1.79769e+3		3.50131e-	1
NRT1.6	1:9400663-9403789	WТ	MT	ОК	(0 0,877865	1.79769e+308	08	3.2692e-08	07	yes
474007570	4 0575 405 050070			014				1.79769e+3		0.047.05	
11627570	1:9575425-9582376	VV I	MI	OK		0 2,0829	1.79769e+308	1 70760 + 2	9.76039e-06	6.64/e-05	yes
AT1G60095	1:22159735-22162419	wт	мт	ок		0.688588	1.79769e+308	08	9.95901e-08	9.64992e- 07	ves
						,		1.79769e+3			,
AT1G03020	1:698206-698515	WΤ	MT	ОК		0 1,78859	1.79769e+308	08	0,00913915	0,0277958	8 yes
								1.79769e+3			
I1G13609	1:4662720-4663471	WI	MI	OK		3,55814	1.79769e+308	08	0,00021683	0,00108079) yes
AT1G21550	1.7553100-7553876	wт	мт	ок		0 562868	1 79769e+308	1.79769e+3 08	0 00115582	0 00471497	ves
				0.11		0,002000		1.79769e+3	0,00110002	1.91089e-	,
T1G22120	1:7806308-7809632	WТ	МТ	ОК	(0 0,617354	1.79769e+308	08	2.48392e-06	05	yes
								1.79769e+3		0,00028514	ļ.
T1G31370	1:11238297-11239363	WT	МТ	ОК		0 1,46254	1.79769e+308	08	4.83523e-05	3	3 yes
	1.13253397-13255570 \	wт	мт	ОК		0 581031	1 79769e+308	1.79769e+3 08	7 87855e-06	5.46603e- 05	Ves
			IVI I	OIX		0,001001		1.79769e+3	1.010000 00	0.00037473	300
AT1G48700	1:18010728-18012871 \	WΤ	МТ	ОК		0 0,556525	1.79769e+308	08	6.53917e-05	6	byes
								1.79769e+3			
T1G59077	1:21746209-21833195	WT	MT	ОК		0 138,886	1.79769e+308	08	0,00122789	0,00496816	6 yes
NT1C60050	1.22121540 22123702 \	NТ	МТ	OK		0 370087	1 70760-+308	1.79769e+3	0 00117053	0.0048004	lvoc
11000000	1.22121345-221237021	V V I		UK		0,370007	1.7970901300	00	0,00117955	0,004000	i yes
AT4G15242	4:8705786-8706997	WТ	MT	OK	0,00930712	2 17,9056	10,9098	-4,40523	1.05673e-05	7.13983e-05	5 yes
AT5G33251	5:12499071-12500433 \	WT	MT	OK	0,049837	5 52,2837	10,0349	-9,8119	0		0 yes
A14G12520	4:/421055-/421/38	VV I	MI	OK	0,019511	1 15,8516	9,66612	-3,90043	9.60217e-05	0,00052890	J4 yes
AT1G60020	1:22100651-22105276 \	wт	мт	ОК	0.011837	7 7 18823	9 24611	-7 50382	6 19504e-14	1 4988e-12	ves
	5.4007005.4000400				0,011007		0,21011	10,00002			,

Outline

Methods of gene expression analysis

- Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis
- Quantitative analysis of gene expression
 - DNA and protein chips
 - Next generation transcriptional profiling
- Regulation of gene expression in the identification of gene function by gain-of-function approaches
 - T-DNA activation mutagenesis

Gain-of-Function Approaches

- Methods for identification of gene function using gain-of-function approaches
 - T-DNA activation mutagenesis
 - Method enabling isolation of dominant mutants by random insertion of constitutive promoter, resulting in overexpression of the gene and therefore in corresponding phenotypic changes
 - First step: preparation of mutant library prepared by tansformation of a strong constitutive promoter or enhancer
 - Next step: search of interesting phenotypes
 - Identification of the affected gene, e.g. by plasmid-rescue

Activation Mutagenesis

Isolation of CKI1 Gene

- Tatsuo Kakimoto, Science 274 (1996), 982-985 *
- Isolation of the gene using activation mutagenesis

- Mutant phenotype is a phenocopy of exogenous application of cytokinins (*CKI1*, <u>*CYTOKININ INDEPENDENT 1*</u>)

Outline

Methods of gene expression analysis

- Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis
- Quantitative analysis of gene expression
 - DNA and protein chips
 - Next generation transcriptional profiling
- Regulation of gene expression in the identification of gene function by gain-of-function approaches
 - T-DNA activation mutagenesis
 - Ectopic expression and regulated gene expression systems

Regulated Expression Systems

Regulated Expression Systems

Regulated Expression Systems

Regulatable gene expression systems

- Time- or site-specific regulation of gene expression, leading to a change in phenotype and thereby identification of the natural function of the gene
 - pOP system
 - UAS system

Outline

Methods of gene expression analysis

- Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis
- Quantitative analysis of gene expression
 - DNA and protein chips
 - Next generation transcriptional profiling
- Regulation of gene expression in the identification of gene function by gain-of-function approaches
 - T-DNA activation mutagenesis
 - Ectopic expression and regulated gene expression systems
- Chemical Genetics

- New trends
 - "chemical genetics" more than 50.000/120.417 records in PubMed database (16.10. 2008/15.11. 2018, an increase of >240 %)

U U ■ https://www.ncbi.nlm.nih.gov/pubmed/?te	rm=cnemical+genetics	E ···· 영 얇 ··· Search	
ng Started	_		
S NCBI Resources 🗹) How To 💬	Sign in to NCBI	Â
Pub Red.gov US National Library of Medicine	PubMed V chemical genetics	Search	
National Institutes of Health	Create RSS Create alert Advanced	пер	
Article types Clinical Trial	Format: Summary + Sort by: Most Recent + Per page: 20 + Send to +	Filters: Manage Filters	
Review Customize	Best matches for chemical genetics:	Sort by:	
Text availability	Chemical genetics: elucidating biological systems with small-molecule compounds. Kawasumi M et al. J Invest Dermatol. (2007)	Best match Most recent	
Free full text Full text	Chemical genetics-based target identification in drug discovery. Cong F et al. Annu Rev Pharmacol Toxicol. (2012)	Results by year	
Publication dates 5 years	Chemical genetics. O'Connor CJ et al. Chem Soc Rev. (2011)		
10 years Custom range	Switch to our new best match sort order		
Species Humans	Search resulte	Download CSV	
Other Animals	Items: 1 to 20 of 120417 << First < Prev	PMC Images search for chemical	
Clear all Show additional filters	Analysis of butterfly reproductive profeins using capillary electrophoresis and mass spectrometry	Using Chemical Genetics in Choology	
	Rokhas MK, Rönn JL, Wiklund C, Emmer A, Anal Bilochem. 2018 Nov 10. pii: S0003-2897(18)31129-1. doi: 10.1016/j.ab.2018.11.002. [Epub ahead of print] PMID: 3042321 <u>Similar articles</u>		
	 KRAS Suppression-Induced Degradation of MYC Is Antagonized by a MEK5-ERK5 Compensatory <u>Mechanism</u> Vaseva AV, Blake DR, Gilbert TSK, Ng S, Hostetter G, Azam SH, Ozkan-Dagliyan I, Gautam P, Bryant KI, Pearce KH, Herino LE, Han H Graves LM, Wirklever JAK, Knudsen ES, Peerci CV, Rashi M N 		
	Houghton PJ, Wennerberg K, Cox AD, Der CJ, Caner Cell 2018 Nov 12:34(5):807-822.e7. doi: 10.1016/j.ccell.2018.10.001. PMID: 30423298	See more (474)	
		Titles with your search terms	
	 wrote genome screen reveals a novel relationship between vvolpachia levels and Drosophila host translation. 	zipper-interacting protein kinase [Proteins. 2018]	
	Grobler Y, Yun CY, Kahler DJ, Bergman CM, Lee H, Oliver B, Lehmann R. PLoS Pathog. 2018 Nov 13;14(11):e1007445. doi: 10.1371/journal.ppat.1007445. [Epub ahead of print]	Dependent Labeling Reve [ACS Chem Biol. 2018]	
	PMIU: 39422992 Pree Article Similar articles	The Bump-and-Hole Tactic: Expanding the Scope of Chemical Genetics. [Cell Chem Biol. 2018]	
	Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13. Zeng M, Kwistkowski ND, Zhang T, Nahel B, Yu M, Liang Y, Ouan C, Wang L, Hoo M, Delokustki S,	See more	
	Zong m, remainement int, zhang i, reader b, Au m, Liang i, Guari C, Wang J, Rab M, Palakulfull S, Zhou S, Zeng Q, Kirschmeier PT, Meghani K, Leggett AL, Qi J, Shapiro GI, Liu JF, Matulonis UA, Lin	Find related data	v

- New trends
 - "chemical genetics" more than 50.000/130.437 records in PubMed database (16.10. 2008/24.10. 2019, an increase of >260 %)
 - Like in the case of genetics, there are also "forward" and "reverse" genetics approaches
 - Unlike in "classical" genetics approaches, the subject of study is not a gene, but a protein
 - Chemical genetics tries to identify either the target protein after a chemical treatment and after following phenotypic changes ("forward" chemical genetics) or chemicals able to interact with protein of interest ("reverse" chemical genetics)
 - For that purpose there are carried out searches in the libraries of various chemicals (thousands of entries, comercially available)
 - example: analysis of endomembrane transport in plants

- Analysis of mechanisms of endomembrane transport by chemical genetics approaches
 - In plants cells there occurr very dynamic processes mediated mainly by endomembrane transport

GFP targeted to the ER

- Analysis of mechanisms of endomembrane transport by chemical genetics approaches
 - In plants cells there occurr very dynamic processes mediated mainly by endomembrane transport (see film, GFP targeting to the ER)
 - Endomembrane transport is an important regulatory mechanism in signal transduction and regulation of cellular processes

Huang et al., 2010

- Analysis of mechanisms of endomembrane transport by chemical genetics approaches
 - By searching in the "library" of chemicals there were identified those, that lead to the secretion of enzyme (carboxypeptidase Y) in yeast (*S. cerevisiae*) – this enzyme is normally transported to the vacuole via the endomembrane transport
 - Analysis of changes in secretion using dotblot and immunodetection of carboxypeptidase Y in the culture medium with monoclonal antibodies

Chemical structure of sortins

Immunodetection of carboxypeptidase

Detection of vacuole phenotype (tonoplast shape) of yeast by staining with a specific color (MDY-64)

0

D

Е

[mg/L]

- Analysis of mechanisms of endomembrane transport chemical genetics approaches
 - By searching in the "library" of chemicals there were identified those, that lead to the secretion of enzyme (carboxypeptidase Y) in yeast (*S. cerevisiae*) – this enzyme is normally transported to the vacuole via the endomembrane transport
 - Analysis of changes in secretion using dotblot and immunodetection of carboxypeptidase Y in the culture medium with monoclonal antibodies
 - Identified compounds ("sortins") were able to induce similar changes in *Arabidopsis* as well – transport mechanisms are conserved in yeast and in plants
 - For detailed identification of the molecular proces affected by one of the identified "sortins", the analysis of its influence on a secretion of a marker protein (AtCPY) was performed – sortin 1 specifically inhibits only this secretory pathway
 - Identifcation of mutants with altered sensitivity to sortin 1 (hyper- or hypo-sensitive mutants) by EMS mutagenesis

bv

Shape of plant vacuoles using EGFP:-TIP

- Analysis of mechanisms of endomembrane transport by chemical genetics approaches – summary
 - GFP::d-TIP vacuole membrane (tonoplast) labelling and identification of mutations leading to altered tonoplast morphology
- Chemical genetics in combination with classical genetics – identification of proteins participating in regulation of endomembrane transport
- Proteomics approaches identification and analysis of vacuole proteome

Summary

Methods of gene expression analysis

- Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis
- Quantitative analysis of gene expression
 - DNA and protein chips
 - Next generation transcriptional profiling
- Regulation of gene expression in the identification of gene function by gain-of-function approaches
 - T-DNA activation mutagenesis
 - Ectopic expression and regulated gene expression systems
- Chemical Genetics

Discussion

