CG920 Genomics

Lesson 4

Forward Genetics

Jan Hejátko

Functional Genomics and Proteomics of Plants,

CEITEC - Central European Institute of Technology
And

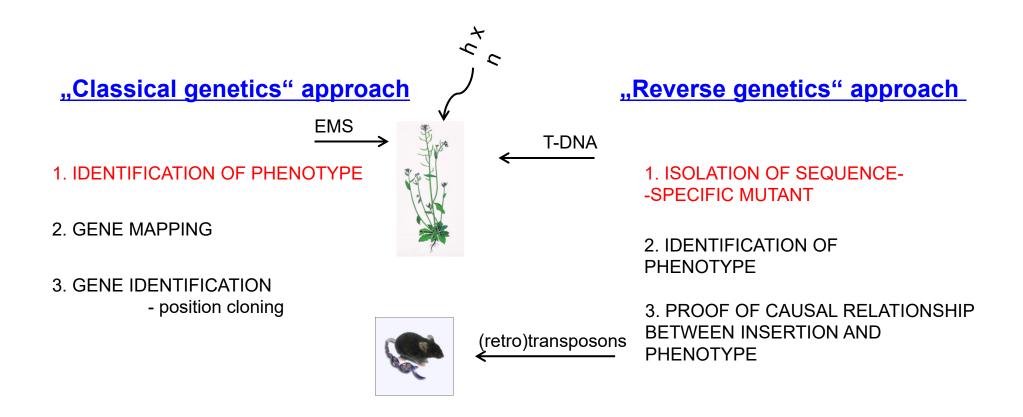
National Centre for Bimolecular Research,

Faculty of Science,

Masaryk University, Brno hejatko@sci.muni.cz, www.ceitec.eu

Outline

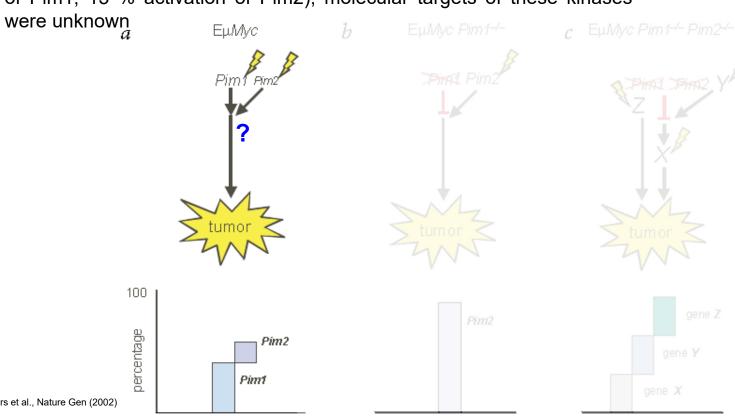
- Forward vs. Reverse Genetics
- Use of Libraries of Insertional Mutants in Forward Genetics
 - Searching in Libraries of Insertional Mutants According to:
 - anatomically or morphologically detectable phenotype
 - metabolic profile
 - expression of genes of interest
 - Identification of the Mutated Locus
 - plasmid rescue
 - iPCR
- Use of Libraries of Point Mutants in Forward Genetics
 - Positional Cloning


Outline

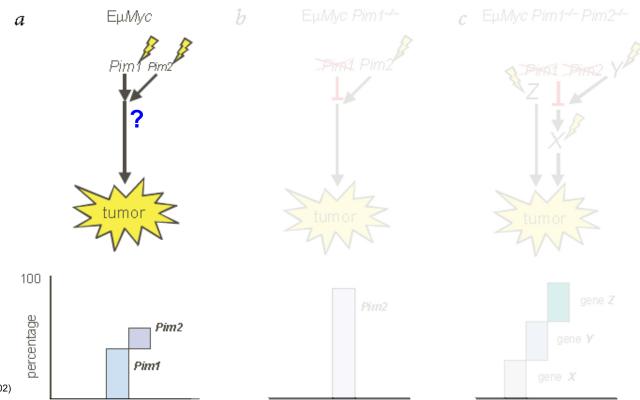
Forward vs. Reverse Genetics

"Classical" genetics *versus* "reverse genetics" approaches in functional genomics

RANDOM MUTAGENESIS

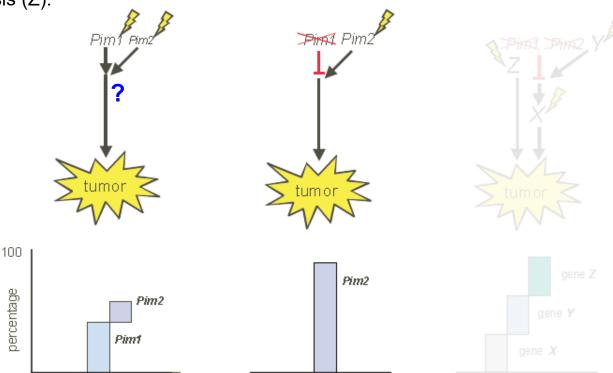

Outline

- Forward vs. Reverse Genetics
- Use of Libraries of Insertional Mutants in Forward Genetics
 - Searching in Libraries of Insertional Mutants According to:
 - anatomically or morphologically detectable phenotype

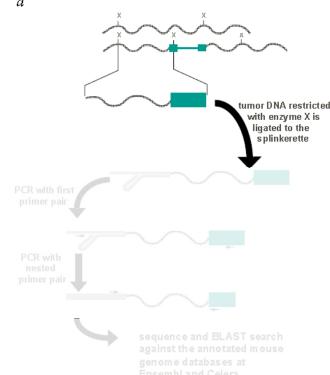


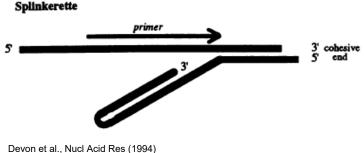
Use of insertional mutagenesis for study carcinogenesis

Infection of EµMyc mice by MoMuLV retrovirus leads to lymphomas formation, which arose due to activation of Pim kinases (40 % activation of Pim1, 15 % activation of Pim2), molecular targets of these kinases



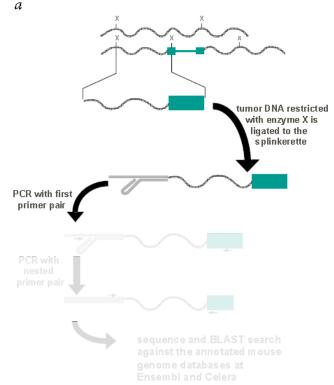
- Use of insertional mutagenesis for study of carcinogenesis
 - Infection of EμMyc pim1 mutants by MoMuLV retrovirus leads to lymphomas formation, which in 90 % contain insertion nearby (activation) Pim2


Use of insertional mutagenesis for study of carcinogenesis


Infection of EμMyc double mutants *pim1*, *pim2* by MoMuLV retrovirus leads to lymphomas formation, which can be expected to activate either one of the signalling partner of Pim proteins (Y), one of the downsteram proteins of Pim signalling pathway (X) or to activate some of the related pathways leading to lymphomagenesis (Z).

 Isolation of genomic regions adjacent to the insertion site of the provirus

 Cleavage of genomic DNA and ligation of special linkers, so-called splincerettes (increasing the specifity of amplification)

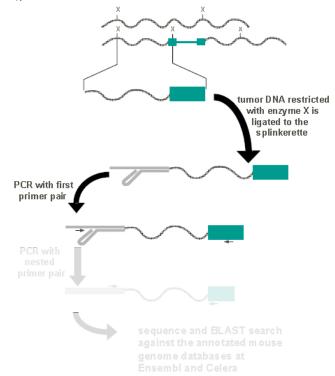


 Isolation of genomic regions adjacent to the insertion site of the provirus

First amplification using specific primers

Splinkerette

primer


3' cohesive ond

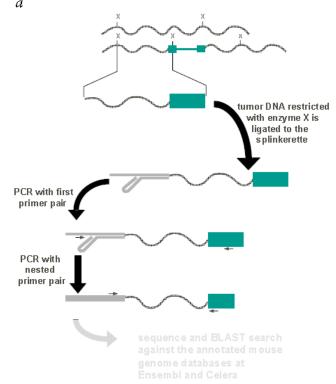
Devon et al., Nucl Acid Res (1994)

 Isolation of genomic regions adjacent to the insertion site of the provirus

 Second amplification using nested primers (increasing the specifity)

Splinkerette

primer


3' cohesive cnd

Devon et al., Nucl Acid Res (1994)

 Isolation of genomic regions adjacent to the insertion site of the provirus

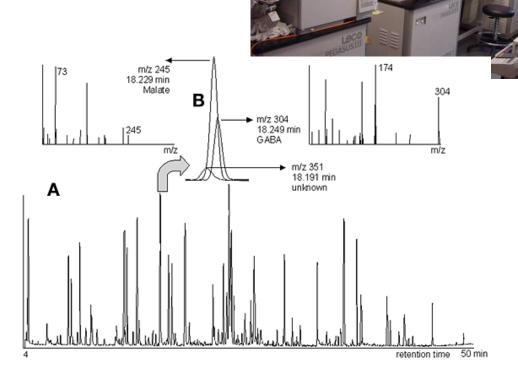
 Sequencing and localization of regions adjacent to provirus by searching in annotated databases of mouse genome

Splinkerette

primer

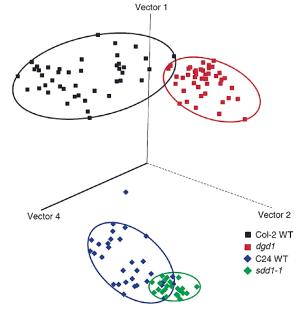
3' cohesive cnd

Devon et al., Nucl Acid Res (1994)

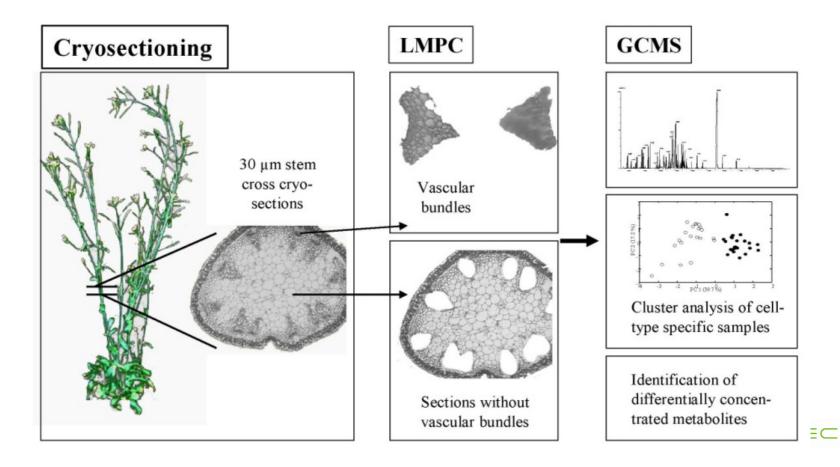

Outline

- Forward vs. Reverse Genetics
- Use of Libraries of Insertional Mutants in Forward Genetics
 - Searching in Libraries of Insertional Mutants According to
 - anatomically or morphologically detectable phenotype
 - metabolic profile

- Metabolic profiling of plants
 - Automated analysis of metabolites (up to 25.000) by GC-MS techniques in libraries of T-DNA mutants


retaboline	WY 58.7	110 565	130 56.5	10 103	W1 16.5	95.H M.S.
davive	1.00 1 0.32	176 5 917	240 7 430	206 7 836	100 1 0.16	331 * 616
argrine	100 1 029	146 7 936	164 7 624	1,99 1 6,28	100 1 020	2.43 1 0.39
акопун	100 1 019	1.31 * 0.14	106 2 609	127 1 629	100 7 606	121 1 047
b-statute	100 1 011	120 1 006	117 5 617	134 1 607	100 1 000	136 1 632
b-statute college	100 1 616	217 1 922	230 1 641	137 1 627	100 7 020	119 1 046
GARA	100 1 619	120 1 000	122 1 611	1.40 4 6.13	100 4 0 13	0.79 ± 0.05
glutamete	100 1 607	122 4 957	169 1 647	116 1 000	100 1 004	100 1 010
glidanas	100 1 036	039 1 017	976 1 639	1 17 L 0 22 000 1 0 10	100 7 016	C85 1 G16
- gyone - hishine	100 1 619	987 1 907	040 - 610	***	100 7 000	166.33 2 163.73
nomocystere .	1.6	5.6	6.0	0.0	4.4	14
5 homogluturerar	116	nd	4.6	0.4	md.	44
honoserre	100 I 612	100 7 9 14	990 7 508	1 58 A 0.95	100 1 0.06	6.44 1 G 62 G 90 1 G 10
6 holestw	100 1 619	120 1 0 14	111 5 029	102 1 000	100 7 0.00	127 1 0 22
7 bone	100 1 016	950 1 931	951 1 500	204 1 000	100 A 4.25	679 1 014
0 nethinine	100 1 613	984 7 919	056 7 033	126 1 0 11	100 * 614	689 1 018
noneucine .	100 1 612	080 1 913	0.00 I 0.00	931 - 944	100 5 6.24	677 A 014
novelne ordine	100 8 614	966 1 9CF	117 5 020	846 f 866 860 f 968	100 1 612	1.00 / 6.20
- destana	100 4 630	076 - 027	984 7 939	999 7 9 15	100 * 4.06	100 1 019
) phenylsterine	160 1 620	179 7 839	118 2 016	1.17 7 0.09	100 4 613	1.89 4 6.15
s protee	100 I 018	059 A 007	105 4 009	120 8 0 12	100 # €08	1.55 * 6.16
5 serre	100 1 620	284 * 0.19	2.60 7 6.20	1.10 5 0.10	100 1 608	400 t 0.86
f. treatine	100 1 021	089 1 0 10 69083 1 215.72	1 05 E 0 11 244.00 7 24.56	20150 7 65 53	100 7 6 65	1749 1 426
7 Ingitation 6 Movine	100 5 628	194 1 032	9 67 E 9 19	134 7 0 16	100 1 0 43	5.04 A G.86
7 value	160 1 614	084 * 908	101 7 000	1.01 7 0.00	100 1 6.01	687 1 610
soorbate	1.60 * 631	066 * 924	976 2 919	140 7 909	100 2 6.11	239 ± 459
CENN	100 1 600	107 1 009	112 5 006	100 1 000	100 # 4.08	6M 1 017
tumorate staturonate	160 * 631	000 4 9 60	424 * 440	14.00	100 1 612 100 1 611	630 1 636
Marron	14	7440 1 539	2000 1 424	2500 / 120	44	24
ghowale.	160 1 600	*** * ***	5.60 T 6.00	164 7 434	100 7 6 08	630 : 652
nochrie	160 4 610	079 7 908	104 - 019	1.46 2 6.19	100 4 6 97	4.42 1 4.47
relate a contribu	1.00 5 610	1.02 * 0.21	100 1 430	064 1 0.12	100 7 6.06	186 1 617
contracts contracts	100 1 612	136 1 100	127 1 412	181 7 6 9	100 7 610	678 1 010
1 sheron	100 1 617	270 1 925	230 1 050	150 1 028	100 / 608	664 1 0 17
2 succinete	160 1 621	234 1 9.19	2 14 7 0 30	165 5 625	100 1 618	2.50 ± 6.56
2 fewrole	1.00 1 619	130 1 400	196 2 011	091 1 019	100 1 606	124 + 014
. bucken	100 1 044	182 5 052	547 7 310	025 1 0.09	100 7 6 13	601 1 255
galaction glaces	100 1 041	429 1 447	356 7 852	025 7 0.06	100 7 8 16	220 1 133
down	110 1 041	14	***	1.6	100 1 612	6.00 1 6.00
inenti	100 1 611	0.16 2 0.05	828 1 804	9.40 1 9.06	100 7 620	E.40 ± 6.04
S STATUTE .	6.6	17.00 1 2.05 78000 1 100.64	** T 17.05	1.0	1.0	13600 1 45.13
militar militar	n.d	790.30 1 100.64 1000.80 1 1107.27	384.00 T 17.05	**	14	1975.00 t 40.13
rents	100 7 600	322 - 422	275 7 430	1.12 1 0 13	100 1 604	1.00 + 1.50
C manness	160 7 636	742 5 658	424 1 674	086 7 018	100 7 611	119 5 0.66
1 sucrose	100 1 625	0.12 - 4.02	9.20 = 9.00	927 1 938	100 : 000	104 1 641
C PYNONY	- 64	205.35 1 30.29	194.17 T 17.36	540 / 130	100 0 0.10	10.30 / 7.34 40.00 / 10.00
fuction FP	100 1 006	29.24 1 2.77 17.62 1 2.12	U.M. 1 270	5.52 × 1.50	100 7 6 10	91.50 1 16.85 31.52 1 7.42
2 phosphochanolymine	100 1 616	102 1 008	110 - 015	974 7 975	100 2 0 35	297 1 542
3004	nd.	D0.00 : 14.41	65.19 : 15.90	38.11 2 11.53	1.4	78.67 * 21.60
6 P-gluconate	6.6	C79.30 1 96.00	247.17 ± 53.43	21306 5 47.87	14	177.50 + 25.60
phosphata	100 2 602	0N 1 004		082 4 685	100 4 900	100 1 007
sperndre unenousse	100 1 631	186 7 609	1.60 ± 4.00	140 1 4.14	1.00 1 0.00	139 1 444
PTOI	100 8 605	074 * 046	045 7 904	041 / 444	100 1 900	972 / 9.19
9 FT92	100 * 610	130 1 014	1.11 * 0.12	126 8 6 19	160 7 920	5.54 1 6.59
F704	100 E 607	0.00 (0.00		076 A 0.04	140 1 9 19	662 t 6.11
P706	100 7 614	114 F 000	0.02 * 0.07 105 * 0.08	077 * 004 148 * 038	160 7 906	199 7 6.14
P106	100 I 019	113 1 011	105 * 008	174 1 0 10	140 1 949	212 1 6.67
PT00	100 7 605	674 1 849	0.76 1 8.05	096 1 006	140 1 0.10	079 7 016
FT00	1.00 5 914	179 1 0.30	126 0 012	1.16 * 0.06	1.00 * 9.19	1.04 7 6.11
	100 4 025	054 7 007	0.60 7 0.14	100 1 010	100 0 0.56	1.19 7 6.01
PTN1	100 7 612	120 1 000	1.66 7 0:30	079 1 0.09	100 1 004	147 1 646
PTN2	100 7 624	147 1 0 20	180 7 030	136 1 0.00	100 1 000	132 7 612
FT15	100 7 018	140 1 0 10	146 1 620	190 1 0.00	160 7 9 99	2.62 1 6.22
6 PTNS	100 1 619	696 1 669	6.65 1 8.68	205 1 104	160 1 939	290 T 138
6 PT17	100 1 022	141 1 0.17	226 1 0 00	246 1 0.67	160 1 0.14	2:65 5 6,38
T PTSS E PTSS	1.00 1 0.11	060 1 000	690 F 609	064 7 659	100 7 0 13	977 * 6.16 247 1 1.54
s PTNO	100 7 041	130 1 033	134 5 632	094 1 000	100 1 927	100 7 0.04
	100 1 000	282 1 030	2.17 1 630	090 1 012	160 1 905	
		184 1 0 79	1.55 = 0.15	150 1 612	100 1 932	
	100 5 019			200 7 0.54		129 1 649
1 PT28 2 PT24	100 7 0.17	215 1 024	2.21 1 0.10			
PT28 2 PT24 3 PT25	100 7 617	150 7 0.06	1.22 - 0.06	105 2 906	100 J 90F	1.40 / 6.65
11 PT28 12 PT24 13 PT25 14 PT25	100 7 617	150 T 036	1.22 ± 606 9.71 ± 606	105 2 106	100 7 905	1.40 A 6.85 0.66 1 6.69
0 9724 11 9728 2 9724 0 9725 X 9725 6 9727	100 7 617	150 7 0.06	1.22 - 0.06	105 2 906	100 J 90F	1.40 / 0.05

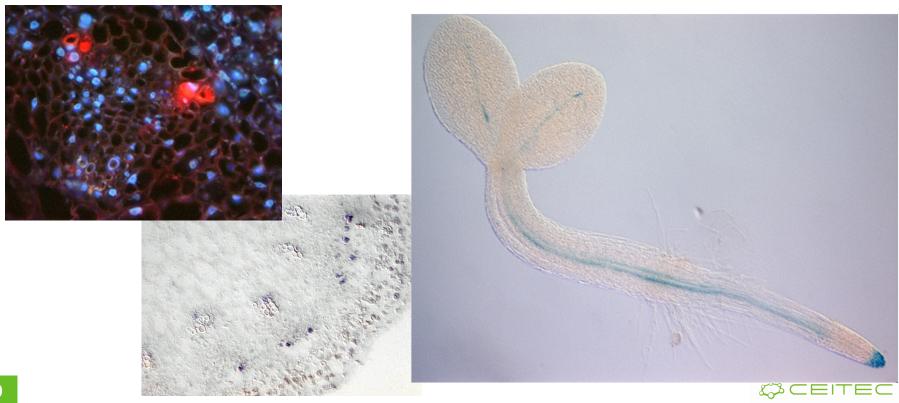
- Metabolic profiling of plants
 - Automated analysis of metabolites (up to 25.000) by GC-MS techniques in libraries of T-DNA mutants
 - Identification of interesting (even comercially interesting) mutants



Metabolic profiling of plants

- Automated analysis of metabolites (up to 25.000) by GC-MS techniques in libraries of T-DNA mutants
- Identification of interesting (even comercially interesting) mutants
- Fast and easy isolation of genes through identification of sequences adjacent to T-DNA

- Metabolic profiling of plants
 - Possibility to use special techniques, e.g. microdissection


Outline

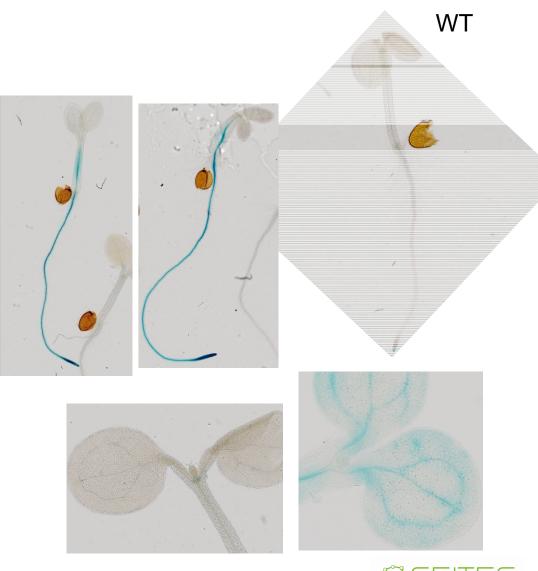
- Forward vs. Reverse Genetics
- Use of Libraries of Insertional Mutants in Forward Genetics
 - Searching in Libraries of Insertional Mutants According to
 - anatomically or morphologically detectable phenotype
 - metabolic profile
 - expression of genes of interest

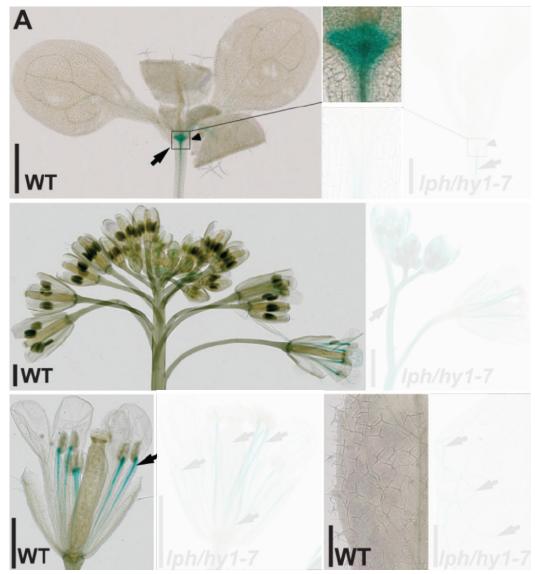
Expression profile

- Identification of mutants with a change in the expression profile
 - Analysis of expression profile (pattern) of the gene and identification of mutants with altered expression pattern

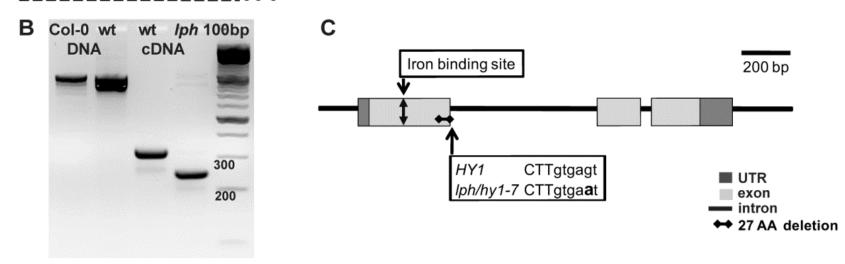
Expression profile

- Identification of mutants with a change in the expression profile
 - Analysis of expression profile (pattern) of the gene and identification of mutants with altered expression pattern
 - Possibility of partial automation (virtual digital microscopy)


Automated Microscopy Screening


Expression profile

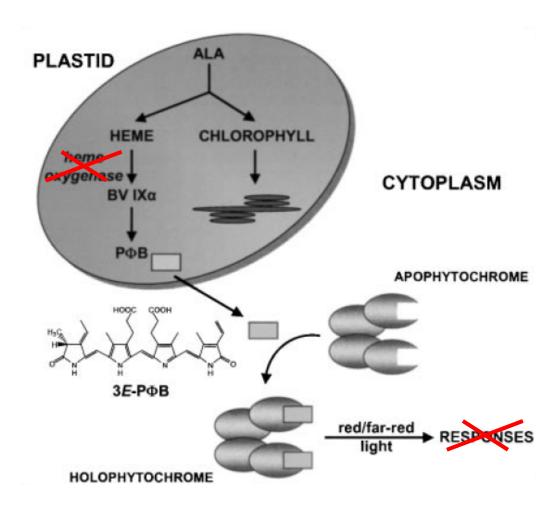
LPH controls expression of CKI1



Iph is novel allele of HEME OXYGENASE 1

A <u>CCTACTGTTGAAGGTTACTTGAGGTTTCTTGTGGATAGTAAATTGGTTTATGATACTCTTGAACTGATTA</u>

TTCAAGACTCCAACTTGtgagttttttttt


HY1 MAYLAPISSSLSIFKNPQLSRFQFSSSSPNPLFLRPRIQILSMTMNKSPSLVVVAATTAAEKQKKRYPGESKGFVEEMRFVAMRLHTKDQAKEGEKETKS 1ph/hy1-7 MAYLAPISSSLSIFKNPQLSRFQFSSSSPNPLFLRPRIQILSMTMNKSPSLVVVAATTAAEKQKKRYPGESKGFVEEMRFVAMRLHTKDQAKEGEKETKS

HY1 NIYFAHSAGGRMIGRKVAERILDNKELEFYKWDGELSQLLQNVREKLNKVAEEWTREEKNHCLEETEKSFKYSGEILRLILS 1ph/hy1-7 NIYFAHSAGGRMIGRKVAERILDNKELEFYKWDGELSQLLQNVREKLNKVAEEWTREEKNHCLEETEKSFKYSGEILRLILS

D

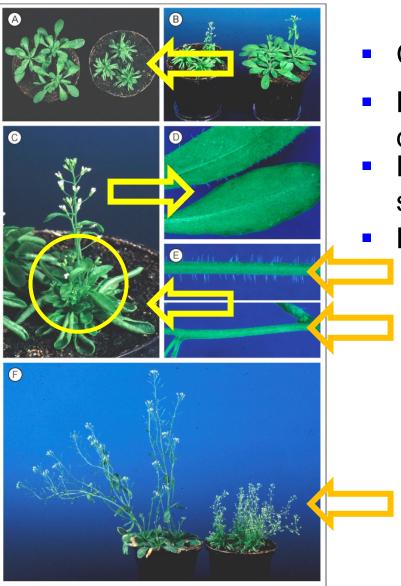
Iph is novel allele of HEME OXYGENASE 1

Terry et al., Biochem Soc Trans, 2002

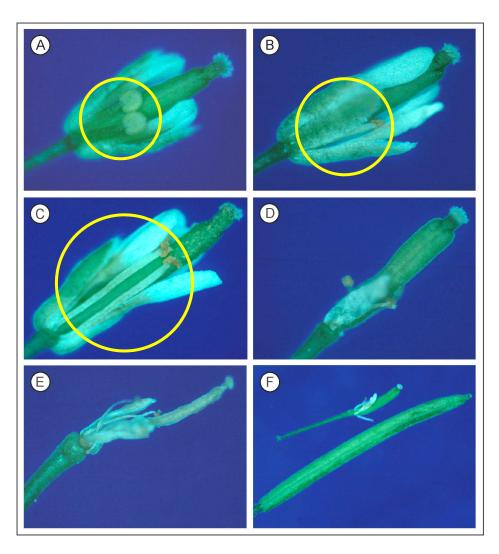
Light controls spatiotemporal specificity of *CKI1* expression

lph/hy1-7 **Short Day Darkness** Red Far-Red 26 Dobisova et al., Plant Phys, 2017

Outline


- Forward vs. Reverse Genetics
- Use of Libraries of Insertional Mutants in Forward Genetics
 - Searching in Libraries of Insertional Mutants According to
 - anatomically or morphologically detectable phenotype
 - metabolic profile
 - expression of genes of interest
 - Identification of the Mutated Locus
 - plasmid rescue
 - iPCR

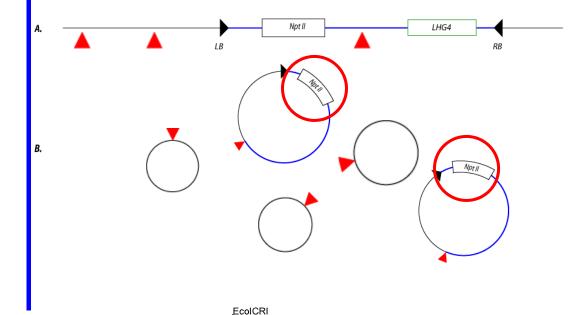
- Identification of chromosomal rearrangements responsible for bushy phenotype of *Arabidopsis*
 - Description of phenotype



Identification of mutant

- Crinkled leaves
- Bushy phenotype (branching defective)
- No trichómes on leaves and stems
- Late senescence

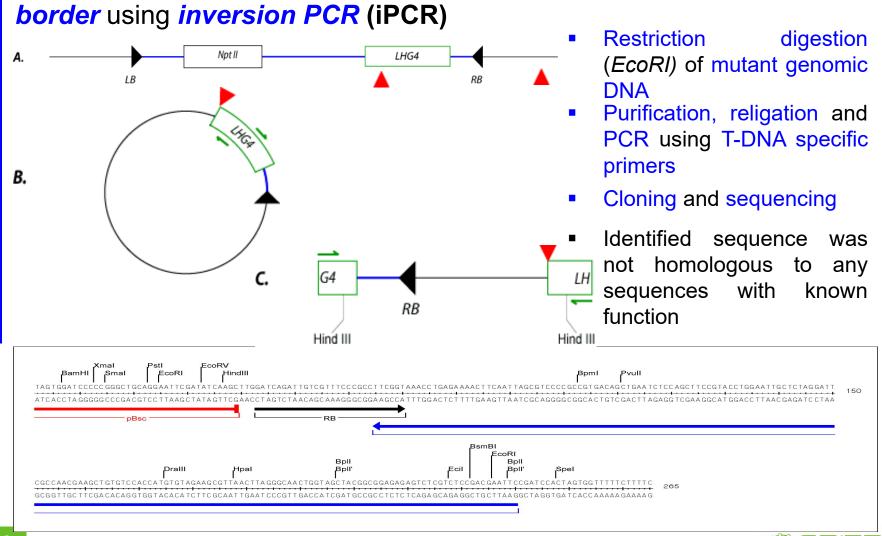
Identification of mutant


 Male sterility, defects in stamen filament elongation (A,B)

(compare with wild type C)

- Identification of chromosomal rearrangements responsible for bushy phenotype of *Arabidopsis*
 - Description of phenotype
 - Identification of T-DNA mutated region

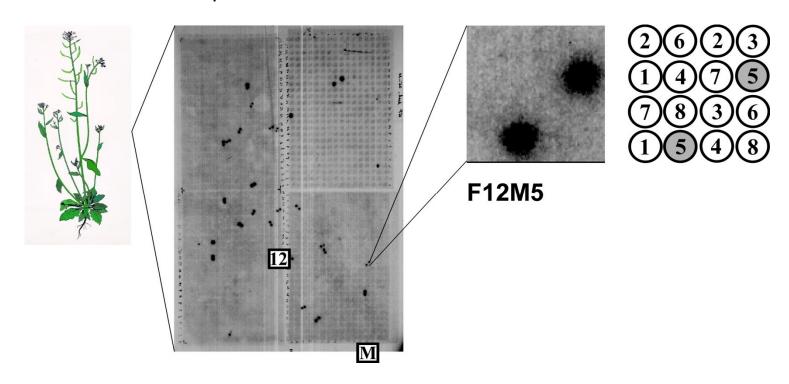
1. Identification of region of genomic DNA adjacent to the *left* border using plasmid rescue



Clal

- Restriction digestion (EcoRI) of mutant genomic DNA
- Religation and transformation of E. coli
- Isolation of plasmid DNA from positively selected clones
- Identified sequence was identical to gene for NAD7 coded by mtDNA

2. Identification of region of genomic DNA adjacent to the *right*



- Identification of chromosomal rearrangements responsible for bushy phenotype of *Arabidopsis*
 - Description of phenotype
 - Identification of T-DNA mutated region
 - Localization of T-DNA insertion site in Arabidopsis genome

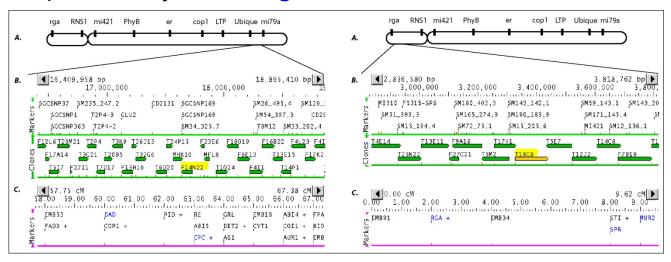
Searching in library IGF-BAC

- Genome library containing 10.752 clones with an average size of an insert of 100 kb
- Bacterial clones arranged in the microtiter plates
- Library loaded onto nylon filters for hybridization with the radiolabeled probe

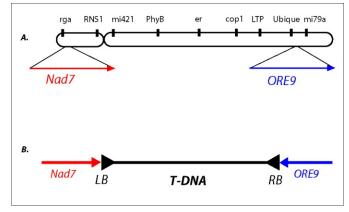
Mapping with IGF-BAC database

I. Sequences adjacent to the left border of T-DNA

- 28 positively hybridizing clones in total
- 19 of them located on chromosome 2
 18 of them similar with mtDNA


II. Sequences adjacent to the right border of T-DNA

- 6 positively hybridizing clones in totalall of them located on chromosome 2

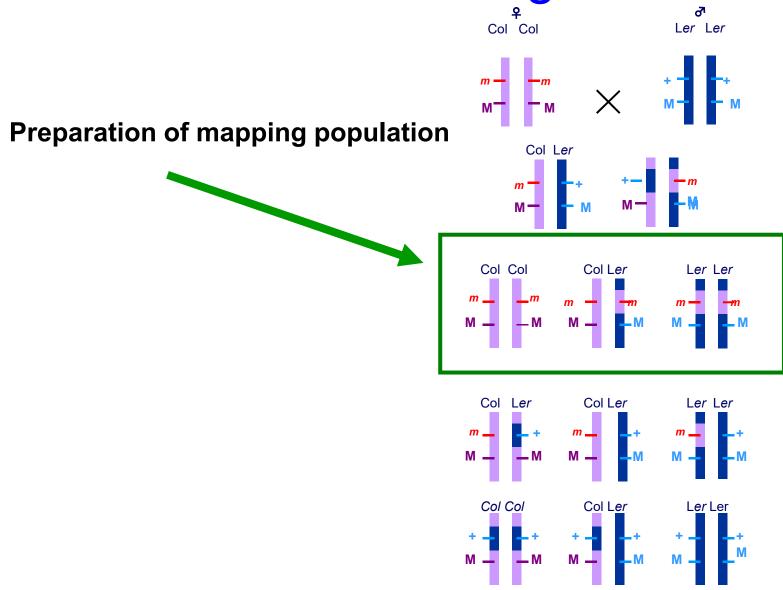

Localization of genomic T-DNA adjacent to both left and right T-DNA borders on chromosome 2

Sequences adjacent to *right* and *left* border of T-DNA

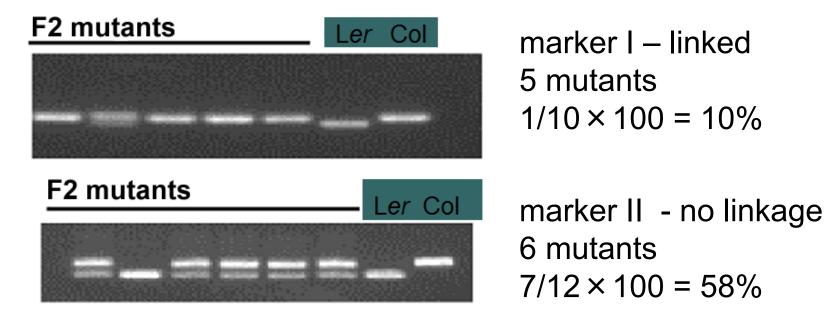
There was probably an inversion of almost entire

chromosome 2

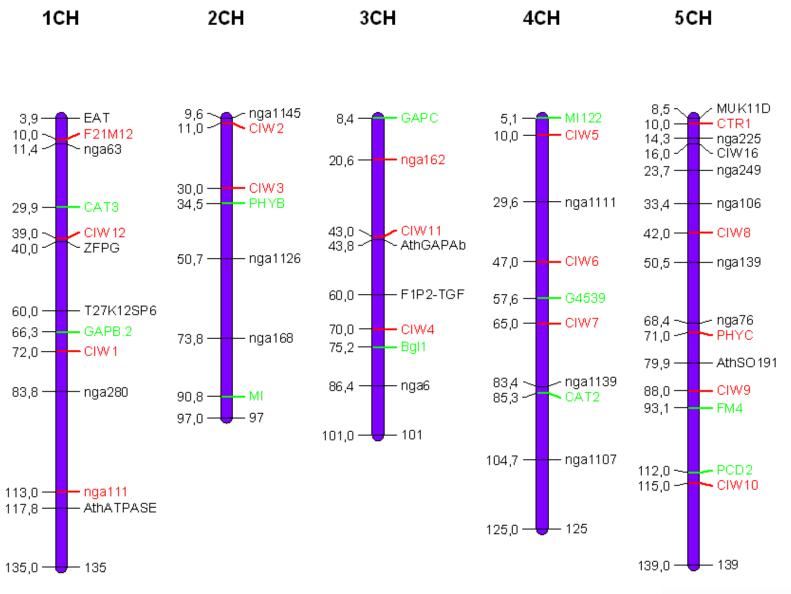
Outline


- Forward vs. Reverse Genetics
- Use of Libraries of Insertional Mutants in Forward Genetics
 - Searching in Libraries of Insertional Mutants According to
 - anatomically or morphologically detectable phenotype
 - metabolic profile
 - expression of genes of interest
 - Identification of the Mutated Locus
 - plasmid rescue
 - iPCR
- Use of Libraries of Point Mutants in Forward Genetics
 - Positional Cloning

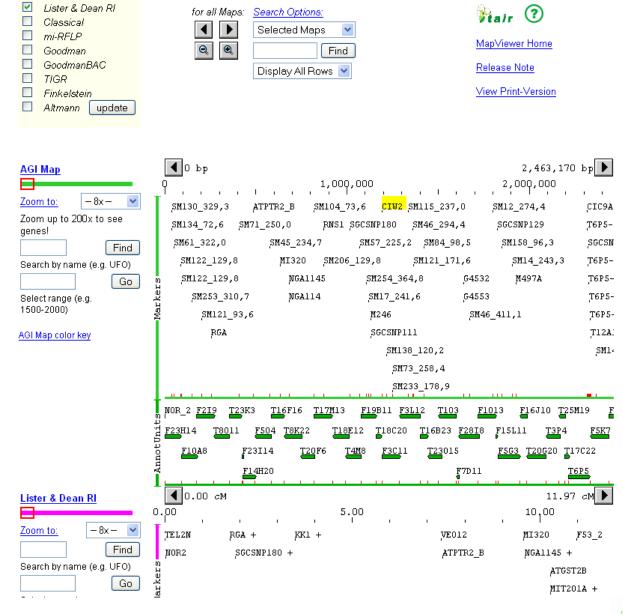
- Positional cloning
 - Principle: co-segregation analysis of segregating population (mostly of offspring of backcrosses) with molecular markers
 - SSLP (Simple Sequence Length Polymorphism)
 - Polymorphism of genome (PCR products) length, amplified using specific primers
 - RFLP (Restriction Fragment Length Polymorphism)
 - Detection by Southern blot (PCR after digestion of the genomic DNA and ligation of adapters)
 - CAPS (Cleaved Amplified Polymorphic Sequence)
 - Restriction fragment length polymorphism, genome segments amplified by PCR
 - RAPD (Randomly Amplified Polymorphic DNA)
 - Polymorphism of length of randomly amplified genome segments, using short 8-10bp primers



Positional cloning



Recombinant analysis – determining the percentage of recombination between mutation and molecular marker r [%] = number of chromosomes of Col / number of all the chromosomes × 100


- Analysis of approximately 2000 mutant plants
- Determining the closest (still segregating) marker
- Identification of mutation by sequencing

Map of DNA molecular markers

Markers for fine mapping

AGI Map

Maps for Chromosome 2

Key Concepts

- Forward genetics allows targeted screening for interesting phenotypes, whose association with a given gene/locus is unknown
 - Employs both insertional mutagenes as well as point mutations
 - Inserional mutation
 - (mostly) loss-of-function mutation
 - Identification via
 - iPCR
 - plasmid rescue
 - Point mutation
 - Both loss-of-function as well as
 - gain-of-function mutations
 - Identification via
 - map-based cloning
 - GWAS

Discussion

