Machines Learning what
makes Biology tick

Panagiotis Alexiou

COREO19 Pokroky a vyzvy v moderni biologii (podzim 2021)
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Franc\g Crick identified himself as a molecular biologist as
a way of shortening his previous description of himself as

"a mixture of a crystallographer, biophysicist, biochemist,
and geneticist.”

Arthur Samuel of IBM developed a computer program
for playing checkers. The program used a scoring
function to assess moves, and learned from previous
games.

1950s — Discovery of DNA structure

1950s — First Machine Learning




Machine Learning

>

The use and development

of computer systems that

are able to learn and adapt
without following explicit instructions,
by using algorithms and statistical models
to analyze and draw inferences
from patterns in data.
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1960s:
The perceptron is able to solve simple
problems such as linear regression.
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growing explosively. We feel it is
important to collect this significant
information, correlate it into a unified
whole and interpret it...
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Late 1960s — Fo—
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Amino acid sequences of similar proteins in different organisms
contain information on relations among species. This information

is analyvzed to reconstruct in detail the history of living things

h'\ Margaret Oakley Davholf

Margaret Dayhoff

r he protein molecules that deter- sequences is something fundamentally tions in the organisms in which they are
mine the form and function of new in biology and biochemistry, un- found, and they can often be substituted
. every living thing are intricately precedented in quantity, in concentrated for one another in laboratory experi-
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Computer processing of DNA sequence data
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1980s — Automated Genome Sequencing

GENOMICS 1, 201-212 (1987)

REVIEW

Automated DNA Sequencing and Analysis of the Human Genome

Leroy E. Hoop, MicHAEL W. HUNKAPILLER,* AND LLOYD M. SMITH'

California Institute of Technology. Pasadena, California 91125, and *Applied Biosystems, Inc.,
850 Lincoln Centre Drive, Foster City, California 94404

Received October 14, 1987

In the past few years, striking advances have been
made in automating DNA sequence analysis. Cur-
rently, efforts are underway to automate and improve
DNA purification, mapping, and data processing pro-
cedures. The predictable advances in these technolo-
gies should soon place us in a position to sequence the
entire human genome. The information derived from
this project will have profound implications for basic
biology and clinical medicine alike.  © 1987 Academic
Prem, Inc.

INTRODUCTION
A proposal to undertake the detailed mapping and
sequence analysis of the human genome has devel-
oped within the biological community in the last 2
years. This proposal has met with enthusiasm on the
part of some and skepticism on the part of others. The

complementary strands of DNA. These strands are
long, linear arrays of four different nucleotides (A, G,
C, and T), and complementarity is achieved by the A's
and C’s on one strand always pairing with the T’s and
('s, respectively, on the other. These chromosomes
contain most of the information necessary for the
construction of a human organism. The one-dimen-
sional information of the nucleotide sequence in the
chromosomes, encoded in discrete segments called
genes, is transcribed and translated into linear pro-
tein polymers composed of 20 different amino acid
subunits. The linear amino acid sequences of proteins
direct their folding into the three-dimensional struc-
tures that give our body size and shape and catalyze
the chemical reactions of life. The human genome
contains about 3 billion nucleotides per haploid set of
chromosomes (a haploid genome is one in which there
is only one member of each chromosome pair), a

Proc. Natl. Acad. Sci. USA
Vol. 85, pp. 2444-2448, April 1988
Biochemistry

Improved tools for biological sequence comparison

(amino acid/nucleic acid/data base searches/local similarity)

WiLLIAM R. PEARSON* AND DAvID J. LipMaNt

*Department of Biochemistry, University of Virginia, Charlottesville, VA 22908; and Mathematical Research Branch, National Institute of Diabetes and

Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892

Communicated by Gerald M. Rubin, December 2, 1987 (received for review September 17, 1987)

ABSTRACT We have developed three computer pro-
grams for comparisons of protein and DNA sequences. They
can be used to search sequence data bases, evaluate similarity
scores, and identify periodic structures based on local se-
quence similarity. The FASTA program is a more sensitive
derivative of the FASTP program, which can be used to search
protein or DNA sequence data bases and can compare a
protein sequence to a DNA sequence data base by translating
the DNA data base as it is searched. FASTA includes an
additional step in the calculation of the initial pairwise simi-
larity score that allows multiple regions of similarity to be
joined to increase the score of related sequences. The RDF2
program can be used to evaluate the significance of similarity
scores using a shuffling method that preserves local sequence
composition. The LFASTA program can display all the re-
gions of local similarity between two sequences with scores
greater than a threshold, using the same scoring parameters
and a similar alignment algorithm; these local similarities can
be displayed as a ‘“‘graphic matrix’’ plot or as individual
alignments. In addition, these programs have been generalized
to allow comparison of DNA or protein sequences based on a
variety of alternative scoring matrices.

FASTP and FASTA achieve much of their speed and selec-
tivity in the first step, by using a lookup table to locate all
identities or groups of identities between two DNA or amino
acid sequences during the first step of the comparison (2).
The ktup parameter determines how many consecutive iden-
tities are required in a match. For example, if ktup = 4 for a
DNA sequence comparison, only those identities that occur
in a run of four consecutive matches are examined. In the
first step, the 10 best diagonal regions are found using a
simple formula based on the number of krup matches and the
distance between the matches without considering shorter
runs of identities, conservative replacements, insertions, or
deletions (1, 3).

In the second step of the comparison, we rescore these 10
regions using a scoring matrix that allows conservative
replacements and runs of identities shorter than krup to
contribute to the similarity score. For protein sequences,
this score is usually calculated using the PAM250 matrix (4),
although scoring matrices based on the minimum number of
base changes required for a replacement or on an alternative
measure of similarity can also be used with FASTA. For
each of these best diagonal regions. a subregion with maxi-
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Great 15-Year Project
To Decipher Genes
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Beginning Scientists Face a Research Fund Drought

SCIENTIFIC
AMERICAN

Can computers think?

Ice agesTa new theory explains the climatic seesaw.
Is the universe right- or left-handed?

In a search for clues to the origis

© 1 SCENTEIC AVESICAN. N

~% 1990 — Boosting

Machine Learning, 5, 197-227 (1990)
© 1990 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

The Strength of Weak Learnability

ROBERT E. SCHAPIRE (rs@theory.lcs.mit.edu)
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139

Abstract. This paper addresses the problem of improving the accuracy of an hypothesis output by a learning
algorithm in the distribution-free (PAC) learning model. A concept class is learnable (or strongly learnable) if,
given access to a source of examples of the unknown concept, the learner with high probability is able to output
an hypothesis that is correct on all but an arbitrarily small fraction of the instances. The concept class is weakly
learnable if the learner can produce an hypothesis that performs only slightly better than random guessing. In
this paper, it is shown that these two notions of learnability are equivalent.

A method is described for converting a weak learning algorithm into one that achieves arbitrarily high accuracy.
This construction may have practical applications as a tool for efficiently converting a mediocre learning algorithm
into one that performs extremely well. In addition, the construction has some interesting theoretical consequences,
including a set of general upper bounds on the complexity of any strong learning algorithm as a function of the
allowed error .
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doi:10.1038/nature14539

2015 — Deep Learning Revolutionpeep tearning

Yann LeCun'?, Yoshua Bengio® & Geoffrey Hinton**

Deep learning allows computational models that are composed of multiple processing layers to learn representations of
data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech rec-
ognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine
should change its internal parameters that are used to compute the representation in each layer from the representation in
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and
audio, whereas recurrent nets have shone light on sequential data such as text and speech.

Yann LeCun Yoshua Bengio Geoffrey Hinton
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ANALYSIS

Predicting the sequence specificities of DNA- and
RNA-binding proteins by deep learning

Babak Alipanahi'>6, Andrew Delong!, Matthew T Weirauch®-* & Brendan J Frey!-?
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sTupies on e rrinairies THAT coviry 1§72 — Protein sequence and structur

by
CHRISTIAN B ANFINSEN

National Institutes of Health

Bethesda, Marvland
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. X . . 101  KKQETEEELIENDYRVSTSKITKQSFKEIEKVALPTNTTSSRPRTECCSD 150
The telegram that I received from the Swedish Royal Academy of Sciences
” . . . . . . . 151 AGDSPLKPVSCPKSKASDKRSLLPHQISQIYDELFQIHLKLQCETAAQQK 200
specifically cites ". . . studies on ribonuclease, in particular the relationship Q180 Q Q Q0
between the amino acid sequence and the biologically active conformation...” 201  FAEELQKRERFLLEREQLLFRHENALSKIKGVEEEVLTRFQIIKEQHDAE 250
The work that my colleagues and I have carried out on the nature of the process 251  VEHLTEVLKEKNKETKRLRSSFDALKELNDTLKKQLNEASEENRKIDIQA 300
] . . . L . 3 )
that controls the folding of polypeptide chains into the unique three-dimen 301 KRVOARLDNLORKYEFMTIQRLKGSSHAVHEMKSLKQEKAPVSKTYKVEL 150
sional structures of proteins was, indeed, strongly influenced by observations
) . . : . 351 NGQVYELLTVFMDWISDHHLSKVKHEESGMDGKKPQLKFASQRNDIQEKC 400
on the ribonuclease molecule, Many others, including Anson and Mirsky (1)
in the '30s and Lumry and Eyring (2) in the ‘50s, had observed and discussed 401  VKLLPLMTEQLQWMPFVNIKLHEPFVKFIYWSLRQLDAGAQHSTMTSTLR 450
the reversibility of denaturation of proteins. However, the true elegance of this 451 RLGEDIFKGVVTKGIQDNSPQHSVENKPKTAAFFKSSNLPLRFLSTLIVL 500
consequence of natural selection was dramatized by the ribonuclease work, 501  KTVTQADYLAQAFDSLCLDLKTEEGKTLFLEYQAVPVILSHLRISSKGLL 550
since the refolding of this molecule, after full denaturation by reductive cleav-
) : . ; i J _ 551  SNVIDSLLQMTVESKSLQPFLEACSNSLFFRTCSVLLRAPKLDLQILEKL 600
age of its four disulfide bonds (Figure 1), required that only one of the 105
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In theory,
a protein’s amino acid sequence
should fully determine its structure.




1994 — CASP: Critical Assessment of protein Structure Predictic

Establishes ‘Protein Folding’ problem as holy grail of machine learning in biology

Given an amino-acid sequence predict protein structure

PROTEINS: Structure, Function, and Genetics 23:ii-iv (1995)

INTRODUCTION

A Large-Scale Experiment to Assess Protein Structure

Prediction Methods

Methods for obtaining information about struc-
ture from amino acid sequence have apparently
been advancing rapidly. But just what can these
methods currently deliver? The following papers
present the results of a large scale experiment that
we have orchestrated to determine the current state
of the art in protein structure prediction. We con-
sider that the only way to objectively assess the use-

sured. The prediction challenge is then in devising
techniques that can determine the detailed struc-
tural differences between the target and the known
related structures. These techniques deal with the
alignment of the target sequence on the templates,
the best choice of template structure for each part of
the chain, small (of the order of 1 or 2 A) adjust-
ments of main chain position, the orientation of side

Participants must blindly predict
the structure of the proteins, and these predictions
are subsequently compared to the ground truth
experimental data when they become available.




2020 — CASP ‘solved’ by Alphafold2

We have been stuck on this one problem — how do
proteins fold up — for nearly 50 years. To see DeepMind
produce a solution for this, having worked personally on
this problem for so long and after so many stops and
starts, wondering if we'd ever get there, is a very special
moment.

PROFESSOR JOHN MOULT
CO-FOUNDER AND CHAIR OF CASP, UNIVERSITY OF MARYLAND



2020 — CASP ‘solved’ by Alphafold2
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2021 —Alphafold2 changes Structural Biology

After decades of effort, only ~18% of the total residues in
human protein sequences are covered by experimentally
determined structures at this time. Alphafold doubles this

number overnight.

In the near future, machine learning should be explored for
predicting structures of protein—nucleic acid complexes...
experimentally resolved protein—RNA complex structures
remain low in number, and training sets are thus small, which
may 1mpair success at this time.

correspondence | ® oo

AlphaFold2 and the future of structural biology

To the Editor — AlphaFold2 is a
machine-learning algorithm for protein
structure prediction that has now been used
to obtain hundreds of thousands of protein
models. The resulting resource is marvelous
and will serve the community in many
ways. Here [ discuss the implications of this
breakthrough achievement, which changes
the way we do structural biology.

Imagine a website where you could

already been applied Lo predict structures of
several protein complexes. Like Alphalold2,
RoseTTAFold is available to the community
and can now be used as an alternative route
to predict protein structure from sequence.

AlphaFold2 and the community
Hall a century ago, the structural
biology community had decided that all
experimentally resolved macromolecular

solution of domain structures by NMR may
be replaced by fast predictions so that the
unique advantages of NMR in investigating
protein folding and dynamics and the
binding of ligands and nucleic acids can be
utilized more readily.

The new prediction algorithms should
also improve automated model building.
This will not change the general approach
in structural biology, which has always
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I. Conventional radiomics Artificial intelligence in medical imaging: switching from
radiographic pathological data to clinically meaningful
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plainability of medical diagnostics




On balance, it is likely that more and more microcomputer-based
medical expert systems will become available. One can already find
surprisingly complex expert systems that run on a microcomputer,
although the scope is usually narrow...

Clinicians with an interest in expert systems should find that there are
many opportunities to examine them through the increasing number
of publications and conferences devoted to all facets of medicine and
computing, including medical expert systems.

In April 2018, the US Food and Drug Administration approved
the first Al-based diagnostic, IDx-DR, which detects diabetic
retinopathy in people with diabetes by analyzing retinal
images. Machine learning will soon be applied to many other
medical conditions, from cardiology to neurodegenerative
diseases and beyond...

1986 — Expert Systems Today — Autonomous Al diagnostis

Medical lnformalics

Medical Expert Systems—Knowledge Tools
for Physicians

EDWARD H. SHORTLIFFE, MD, PhD, Stanford, California

Recent advances in the field of artificial intelligence have led to the emergence of expert systems,
computational tools designed to capture and make available the knowledge of experts in a field.
Although much of the underlying technology available today is derived from basic research on
biomedical advice systems during the 1970s, medical application packages are thus far generally
unavailable from the young artificial intelligence industry. Medical expert systems will begin to
appear, however, as researchers in medical artificial intelligence continue to make progress in key
areas such as knowledge acquisition, model-based reasoning and system integration for clinical
environments. It is accordingly important for physicians to understand the current state of such
research and the theoretic and logistic barriers that remain before useful systems can be made
available. One experimental system, ONCOCIN, provides a glimpse of the kinds of knowledge-
based tools that will someday be available to physicians.

(Shortliffe EH: Medical expert systems—Knowledge tools for physicians, In Medical informatics
[Special Issue]. West J Med 1986 Dec; 145:830-839)

ARTICLE
Pivotal trial of an autonomous Al-based diagnostic system for

detection of diabetic retinopathy in primary care offices

Michael D. Abramoff (3", Philip T. Lavin®, Michele Birch®, Nilay Shah” and James C. Folk™®*

Artificial Intelligence (Al) has long promised to increase healthcare affordability, quality and accessibility but FDA, until recently, had
never authorized an autonomaous Al diagnostic system. This pivotal trial of an Al system to detect diabetic retinopathy (DR) in
people with diabetes enrolled 900 subjects, with no history of DR at primary care clinics, by comparing to Wisconsin Fundus
Photograph Reading Center (FPRC) widefield stereoscopic photography and macular Optical Coherence Tomography (OCT), by
FPRC certified photographers, and FPRC grading of Early Treatment Diabetic Retinopathy Study Severity Scale (ETDRS) and Diabetic
Macular Edema (DME). More than mild DR (mtmDR) was defined as ETDRS level 35 or higher, and/or DME, in at least one eye. Al
system operators underwent a standardized training protocol before study start. Median age was 59 years (range, 22-84 years);
among participants, 47.5% of participants were male; 16.1% were Hispanic, 83.3% not Hispanic; 28.6% African American and 63.4%
were not; 198 (23.8%) had mtmDR. The Al system exceeded all pre-specified superiority endpoints at sensitivity of 87 2% (95% O,
81.8-91.2%) (>B5%), specificity of 90.7% (95% Cl, 88.3-92.7%) (>B2.5%), and imageability rate of 96.1% (95% CI, 94.6-97.3%),
demonstrating Al's ability to bring specialty-level diagnostics to primary care settings. Based on these results, FDA authorized the
system for use by health care providers to detect more than mild DR and diabetic macular edema, making it, the first FDA
authorized autonomous Al diagnostic system in any field of medicine, with the potential to help prevent vision loss in thousands of
people with diabetes annually. ClinicalTrials.gov NCT02963441

npj Digital Medicine (2018)1:39 ; doi:10.1038/541745-018-0040-6



Google Health

Al-enabled imaging and i
diag nostics pre\./lously Uncerstand your sk
thought impossible cancitiags

Submit pictures of your skin concerns—moles,
birthmarks, rashes, and more—and find possible

In partnership with healthcare organizations globally, we're matching conditions

researching robust new Al-enabled tools focused on diagnostics to
assist clinicians. Drawing from diverse datasets, high-quality labels,
and state-of-the-art deep learning technigues, we are making
models that we hope will eventually support medical specialists in
diagnosing disease. We're excited to further develop this research
towards new frontiers—and to demonstrate that Al has the ability to
enable novel, transformative diagnostics.

Improving access to skin disease
iInformation

[E] Forinformational purposes only

Through computer vision Al and image search capabilities, we are developing a tool Results aren't a medical diagnosis
to help individuals better research & identify their skin, hair, and nail conditions. The © Private and secure
tool supports hundreds of conditions, including more than 80% of the conditions You control what you share

seen in clinics and more than 90% of the most commonly searched conditions. The
work was highlighted in both Nature Medicine and JAMA Network Open.

This product has been CE marked as a Class | medical device in the EU. It is not available in the United States.
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Finding genes by computer:
the state of the art

JAMES W. FICKETT

Discovering new genes, and their functions, can be aided
not only by special purpose gene (and coding region)
Jinding software, but also by searcbes in key databases,
and by programs for finding particular sites relevant to
gene expression, such as promolers and splice siles.

No one software package includes all the necessary tools.
1 describe bere the main kinds of tools; their working
principles, strengths and limitations; and bow combined
evidence from multiple tools can aid in optimum gene
identification.

Finding the genes in genomic DNA
Christopher B Burge* and Samuel Karlin®

Genome sequencing efforts will soon generate hundreds of
millions of bases of human genomic DNA containing thousands
of novel genes. In the past year, the accuracy of computational
gene-finding methods has improved significantly, to the paint
where a reasonable approximation of the gene structures within
an extended genomic region can often be predicted in advance
of more detailed experimental studies.

Addresses

*Center for Cancer Research and Department of Biology,
Massachusetts Institute of Technology, 40 Ames Street, E17-526
Cambridge, MA 02139, USA; e-mail: cburge@mit.edu
tDepartment of Mathematics, Stanford University, 450 Serra Mali,
Stanford, CA 94306, USA; e-mail: sam@galois.stanford.edu
Correspondence: Samuel Karlin

Current Opinton in Structural Biology 1998, 8:346-354

sequences, owing o the higher gene density typical of
prokaryotes and the absence of introns in their protein
coding genes. These properties generally imply that most
open reading frames (ORFs) encountered in a prokarvot-
ic sequence that are longer than some reasonable thresh-
old, such as 300 or 500 base pairs (bp) will likely
correspond to genes. The primary difficulties arising from
this simple approach are that very small genes will be
missed and that the occurrence of overlapping long ORFs
on opposite DNA strands (genes and “shadow genes’)
often leads ro ambiguities. To resolve these problems,
several methods have been devised that wse different
types of Markov models (see below) in order to capture
the compositional differences among coding regions,
*shadow’ coding regions {coding on the opposite DNA




2001 — Human Genome Sequenced

Hierarchical shotgun sequencing

Genome sequencing

Genomic DNA

BAC library

Organized
mapped large
clone contigs

BAC to be
sequenced

Shotgun
clones

Shotgun
sequence

+ACCGTARATGGGCTGATCATGCTTARAACCCTGTGCATCCTACTG.

Assembly

Figure 2 ldealized representation of the hierarchical shotgun sequencing strategy. A
library is constructed by fragmenting the target genome and cloning it into a large-
fragment cloning vector; here, BAC vectors are shown. The genomic DNA fragments
represented in the library are then organized into a physical map and individual BAC
clones are selected and sequenced by the random shotgun strategy. Finally, the clone
sequences are assembled to reconstruct the sequence of the genome

Initial sequencing and analysis of the
human genome

International Human Genome Sequencing Consortium*

* A partial list of authors appears on the opposite page. Affiliations are listed at the end of the paper.

The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution.
Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human
genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

THE
HUMAN

GENOME

R Asinican Associarion

February 2001 - Publication of the first draft of the human genome
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2000s — Sequencing gets cheap

$1M Moere's Law

$100K

$10K

National Human Genome
$1IK— Research Institute

genome.govisequencingcosts

R Y

Adaptor modified DNA strand hybridized to

/ oligonucleotide anchor
)

Genome Analyzer
o

» 1 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
vyl Vvl
e e Next Generation Sequencing
e g : New Generation Sequencing
3 g NGS
o, §ommgueSS W
2006 — Solexa Genome Analyser o
2007 — Solexa bought by Illumina ey

Sequencing by reversible dye terminators

We are building a

N
research program of WA @)

1,000,000+ people. environment restie

The All of Us Research Program is an ambitious effort to

Y [+ D
gather health data from one million or more people living ‘,‘ ..g\\ K
in the United States to accelerate research that may “ AN ‘
improve health. ..\{\§°:
o
o

OPPORTUNITIES FOR RESEARCHERS .
bioclogy

Research focuses on the intersection
of three factors

Realistic goal 1n three-five years

Sequence the entire human genome in a few
days for $1000 (Era of Personal Genomics)

HOWEVER, speed of sequencing does not
necessarily mean an understanding of the
genetic information or DNA structure!
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)10s — Sequencing gets diversified

RNA Transcription

Chromatin Isolation by RNA Purification (ChIRP-Seq)

Global Run-on Sequencing (GRO-Seq)

Ribosome Profiling Sequencing (Ribo-Seq)/ARTseq™

RNA Immunoprecipitation Sequencing (RIP-Seq)
High-Throughput Sequencing of CLIP cDNA library (HITS-CLIP) or
Crosslinking and Immunoprecipitation Sequencing (CLIP-Seq)
Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP)
Individual Nucleotide Resolution CLIP (iCLIP)

Native Elongating Transcript Sequencing (NET-Seq)

Targeted Purification of Polysomal mRNA (TRAP-Seq)
Crosslinking, Ligation, and Sequencing of Hybrids (CLASH-Seq)
Parallel Analysis of RNA Ends Sequencing (PARE-Seq) or
Genome-Wide Mapping of Uncapped Transcripts (GMUCT)
Transcript Isoform Sequencing (TIF-Seq) or

Paired-End Analysis of TSSs (PEAT)

RNA Structure

Selective 2'-Hydroxyl Acylation Analyzed by Primer Extension Sequencing (SHAPE-Seq)
Parallel Analysis of RNA Structure (PARS-Seq)

Fragmentation Sequencing (FRAG-Seq)

CXXC Affinity Purification Sequencing (CAP-Seq)

Alkaline Phosphatase, Calf Intestine-Tobacco Acid Pyrophosphatase Sequencing (CIP-TAP)
Inosine Chemical Erasing Sequencing (ICE)

m6A-Specific Methylated RNA Immunoprecipitation Sequencing (MeRIP-Seq)

Low-Level RNA Detection

Digital RNA Sequencing

Whole-Transcript Amplification for Single Cells (Quartz-Seq)

Designed Primer-Based RNA Sequencing (DP-Seq)

Switch Mechanism at the 5’ End of RNA Templates (Smart-Seq)

Switch Mechanism at the 5' End of RNA Templates Version 2 (Smart-Seq2)
Unique Molecular Identifiers (UMI)

Cell Expression by Linear Amplification Sequencing (CEL-Seq)

Single-Cell Tagged Reverse Transcription Sequencing (STRT-Seq)

DNA Methylation

Low-Level DNA Detection

Single-Molecule Molecular Inversion Probes (smMIP)

Multiple Displacement Amplification (MDA)

Multiple Annealing and Looping-Based Amplification Cycles (MALBAC)
Oligonucleotide-Selective Sequencing (0S-Seq)

Duplex Sequencing (Duplex-Seq)

Bisulfite Sequencing (BS-Seq)

Post-Bisulfite Adapter Tagging (PBAT)

Tagmentation-Based Whole Genome Bisulfite Sequencing (T-WGBS)
Oxidative Bisulfite Sequencing (oxBS-Seq)

Tet-Assisted Bisulfite Sequencing (TAB-Seq)

Methylated DNA Immunoprecipitation Sequencing (MeDIP-Seq)
Methylation-Capture (MethylCap) Sequencing or
Methyl-Binding-Domain-Capture (MBDCap) Sequencing
Reduced-Representation Bisulfite Sequencing (RRBS-Seq)

DMA-Protein Interactions

DNase | Hypersensitive Sites Sequencing (DNase-Seq)
MNase-Assisted Isolation of Nucleosomes Sequencing (MAINE-Seq)
Chromatin Immunoprecipitation Sequencing (ChIP-Seq)
Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-Seq)
Assay for Transposase-Accessible Chromatin Sequencing (ATAC-Seq)

Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChlA-PET)

Chromatin Conformation Capture (Hi-C/3C-Seq)
Circular Chromatin Conformation Capture (4-C or 4C-Seq)
Chromatin Conformation Capture Carbon Copy (5-C)

Sequence Rearrangements

Retrotransposon Capture Sequencing (RC-Seq)
Transposon Sequencing (Tn-Seq) or Insertion Sequencing (INSeq)
Translocation-Capture Sequencing (TC-Seq)
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Defining functional DNA elements in the
human genome

Manolis Kellis>®'-?, Barbara Wold“2, Michael P. Snyder"'i, Bradley E. Bernstein™**?, Anshul I(undaje"'"a,

Georgi K. Marinov™*, Lucas D. Ward™"™*, Ewan Birney?, Gregory E. Crawford", Job Dekker', lan Dunham?,

Laura L. Elnitski', Peggy J. Farnham®, Elise A. Feingold’, Mark Gerstein', Morgan C. Giddings™, David M. Gilbert",
Thomas R. Gingeras®, Eric D. Green/, Roderic Guigo®, Tim Hubbard?, Jim Kent", Jason D. Lieb®, Richard M. Myers',
Michael J. Pazin, Bing Ren", John A. Stamatoyannopoulos®, Zhiping Weng', Kevin P. White™, and Ross C. Hardison™"*
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functional genomic elements? /

with human disease.

With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement
to genetic and comparative genomics approaches, the Encydopedia of DNA Elements Project was launched to contribute maps of RNA transcripts,
transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity
with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated

raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of
biochemical, evolutionary, and genetic approaches for defining functional DMA segments, potential sources for the observed differences in estimated
genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic
coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we
need to use combinations of all three to elucidate genome function in human biclogy and disease.
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Nucleic Acids Research, 2007, Vol. 35, Web Server issue W339-W344
doi: 10,1093 [nar[ghm368

MiPred: classification of real and pseudo microRNA
precursors using random forest prediction model
with combined features

Peng Jiang, Haonan Wu, Wenkai Wang, Wei Ma, Xiao Sun and Zuhong Lu*

State Key Laboratory of Bioelectronics, Department of Biological Science and Medical Engineering,
Southeast University, Nanjing, 210096, P. R. China

Received January 18, 2007; Revised and Accepted April 26, 2007

Real Fake
Pre-miR microRNAs
(miRBase) (bkground)

The P-value of randomization test feature Features Sp (%) Se (%) ACC (%) MCC

In order to determine if the MFE value is significantly different from that of random sequences, a Monte

5
Carlo randomization test was used (22). The test can be summarized as follows: A 90.48 85.89 88.21 0.77

A+B 9524 9141 9335 0.87

1. Compute MFE of the secondary structure inferred from the original sequence.

i1. Randomize the order of the nucleotides in the original sequence while keeping the dinucleotide A+C 97.62 94.47  96.07 0.92

distribution (or frequencies) constant. Then compute the MFE for the inferred structure based on the
A+B+C 9821 95.09 96.68 0.94

shuffled sequence.
ii. Repeat step 2 a great number of times (1000) in order to build the distribution of MFE values.

iv. If NV is the number of iterations and R the number of randomized sequences that have a MFE value

less or equal to the original value, then P-value is defined as: A: local contiguous triplet structure composition;

» R B: Minimum of free energy (MFE) of the secondary structure;
“N+1

C: P-value.

Measure Measure
Features Features

Compare Features & Build Model

Scan Genome for new pre-miR
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Nucleie Actds Research, 2007, Vol 35, Web S:rr};;;‘:}ﬂ;:wjﬁfjtt:;:;‘{ A40 citations Features Sp (%) Se (%) ACC (%) MCC
A 90.48 8589 8821 0.77
MiPred: classification of real and pseudo microRNA A+B 9524 9141 9335 087
precursors using random forest prediction model A+C 9762 9447 9607 092
with combined features A+B+C 9821 9509 9668 094
Peng Jiang, Haonan Wu, Wenkai Wang, Wei Ma, Xiao Sun and Zuhong Lu*
State Key Laboratory of Bioelectronics, Department of Biological Science and Medical Engineering, A: local contiguous triplet structure composition;
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Network for Identification of Small
Non-coding RNA genomic loci
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Genomic Annotation Benchmarks

*Ready to use genomic classification datasets (cleaned, train/test split)
*Get the benchmark to your machine with one line of Python code
*Pre-trained models can be used for transfer learning

(bit.ly/genbench)
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Friday 19t November 2021: Hackathon! (in hybrid mode) — ALL are welcome — Email Panagiotis Alexiou for details
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Machines Learning what makes
Biology tick
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