

BIOMARKERS AND TOXICITY MECHANISMS 01 - INTRODUCTION

Luděk Bláha, PřF MU, RECETOX www.recetox.cz

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Course summary

1) Introduction

- Intro and overview of the mechanisms beyond the toxicity (with special respect to environmental contaminants)
- Intro and concept of biomarkers

2) Details on selected important toxicity mechanisms

- Membrane toxicity, enzyme inhibitions, oxidative stress, genotoxicity, Nuclear Receptors (AhR, ER, AR) etc.
- Methods to determine toxicity mechanism

3) Biomarkers

- What it is and how to find (identify) suitable biomarker(s)?
- The overview of the most important biomarker classes
- Methods of biomarker assessment

The importance of understanding to toxicity mechanisms

1962

The author of THE SEA AROUND US and THE EDGE OF THE SEA stions our attempt to control the natural world about us

Carson

Centrum pro výzkum toxických látek

v prostředí

hton

© Patuxent Wildlife Refuge, MA, USA

The great expectations held for DDT have been realized. During 1946, exhaustive scientific tests have shown that, when properly used, DDT kills a host of destructive insect pests, and is a benefactor of all humanity. Pennsalt produces DDT and its prod-

ucts in all standard forms and is now

one of the country's largest producers of this amazing insecticide. Today, everyone can enjoy added comfort. health and safety through the insectkilling powers of Pennsalt DDT products . . . and DDT is only one of Pennsalt's many chemical products which benefit industry, farm and home.

GOOD FOR STEERS - Beef grows meatier mwadays... for it's a scientific fact that -compared to untreated cattle - beef-steers gain up to 50 pounds extra when protected from horn flies and many other pests with DDT inserticides.

apples, joicier fruits that are free from unsightly worms , , all benefits resulting from DDT dusts and sprays,

GOOD FOR ROW CROPS-25 more barrels of postoses per acre ... actual DDT tests have shown roop increases like this! DDT dusts and sprays help truck farmers pass these gains along to you.

PENNSYLVANIA SALT MANUFACTURING COMPANY WIDENER BUILDING, PHILADELPHIA 7, PA.

http://www2.ucsc.edu/scpbrg/

GOOD FOR FRUITS - Bigger apples, juicier fruits that are

97 Years' Service to Industry . Farm . Home

Knox FOR THE HOME-helps more comfortable homes protects your family from

In vivo: shell thinning

In situ: bioaccumulation -> bird population decline

Centrum pro výzkum toxických látek v prostředí Biochemistry discovered in 1970s: **Bird** carbonate dehydratase

Bitman et al. *Science* 1970, 168(3931): 594

Thalidomide

- Originally marketed in 1957 as sedative / hypnotic
 - also curing anxiety, gastritis, tension
 - against nausea and morning sickness of pregnant
 - TERATOGENICITY → Develoment of phocomelia = limb malformations (10 000 children worldwide / 40% survived)

Centrum pro výzkum toxických látek v prostředí

	Teratogenic Manifestations of Thalidomide															
	Number of Days Past Last Menstruation															
	32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52							52								
Ear missing (anotia)																
Thumbs missing or deformed (aplasia)																
One or both arms missing (amelia)																
Both arms shortened (phocomelia)																
Hip dislocation																
Ears deformed																
Legs Missing (amelia)																
Both Legs shortened (phocomelia)																
Thumbs malformed (triphalangism)																
Humerus missing or deformed (ectromelia)																
Femur missing or deformed (ectromelia)																
Chart Based on Nowack ⁽¹⁰⁶⁾																

• Currently still in use - completely different targets : anticancer (multiple myeloma), antileprosis, immunosupression

Thalidomide

Thalidomide ... mechanisms of action

(1) Sedative effects ... mechanism unknown

(2) Teratogenicity

(3) Anticancer

MECHANISMS of chronic toxicity

Various chronic effects have uniform biochemical basis

- principle studies with mechanistically based in vitro techniques
- estimation of in vitro effects of individual compounds

Understanding MoA ... may predict higher-level effects

Organism

Population & beyond

Basics and keywords from toxicology

Toxicity - concept

Figure 1 The effective concentration of a pollutant in an organism (e.g. fish, daphnia, algae) or at the target site inside the organism is the link between the environmental fate of a pollutant and its toxic effect.

Centrum pro výzkum

toxických látek

prostředí

Escher, B. I., Behra, R., Eggen, R. I. L., Fent, K. (1997), "Molecular mechanisms in ecotoxicology: an interplay between environmental chemistry and biology", *Chimia*, **51**, 915-921.

From mechanisms (or modes of action) to biomarkers

- Chemical enters organism
 + may be metabolized/detoxified, transported, released ...
- Chemical reacts with target (e.g.
 DNA) and changes a specific nucleotide (e.g. G → de-oxo-G)
- Elevated de-oxo-G in blood

Toxicodynamics

toxicity mechanisms
(MoA) and following toxic
effects (e.g. mutation,
cancer ...)

 \rightarrow Toxicokinetics

 → (Selective) biochemical marker (biomarker)
 = information about exposure and/or effect

Toxicity – the cause-effect paradigm

Paracelsus (1493 - 1541)

'What is there which is not a poison?

- All things are poison and nothing without poison.
- Solely <u>the dose determines</u> that a thing is not a poison.
- Toxicology the science of doses

What processes are beyond toxicokinetics?

Toxicokinetics ...

... EXPOSURE phase \rightarrow Determines the final dose

Toxicokinetics in fish

Fig. 3.5 Uptake, accumulation and loss processes for a toxicant in the ambient water with fish.

ToxicoDYNAMICS

What is toxicity? What are the types of effects?

- Toxicity
 - degree to which a substance (at certain dose) can damage an organism
- Exposure & toxicity
 - acute (immediate, high doses, days)
 - chronic (sublethal / low doses, long-term)
- Effect & toxicity
 - lethal (acute)
 - mortality definitive endpoint / high doses
 - easy to determine (single endpoint death)
 - nonlethal, sublethal (chronic)
 - endocrine disruption, reproduction toxicity, immunotoxicity, tumor induction etc.
 - difficult to determine (multiple endpoints)
 - more specific low concentrations / longer exposures
 - often reflected by specific biochemical changes (biomarkers)
- Systems and organ & toxicity
 - Systemic lethal toxicity
 - Organ-specific toxicity (neurotoxicity, hepatotoxicity, nefrotoxicity ...)
 - Developmental toxicity
 - Reproduction toxicity

Principles of toxicity testing

- 1) Define and know **biological target** (molecule, cell, organism, population) and its properties
- 2) Define and know chemical and its properties

3) Define exposure of biological system to a chemical

- variable concentrations
- defined or variable duration (time)
- conditions (T, pH, life stage)
- 4) Assess effects, i.e. Changes in measurable parameter in relationship to variable doses

 5) Dose-response evaluation & estimation of the toxicity value (i.e. concentration or dose):
 LDx, ICx, ECx, LOEC/LOEL, MIC ...

Effect assessment - procedure

Centrum pro výzkum toxických látek v prostředí

How to study (chronic) toxicity ?

In vitro studies (biochemical mechanisms)

easy to perform, short-term
highly controlled conditions
lower amounts of chemicals needed (new cmpnds screening)

In vivo biotest testing

- + unique whole organisms
- + controlled conditions
- + better ecological interpretation

- ecotoxicological relevancy
- mostly with vertebrate cells

- only few (ecologically
- nonrelevant) organisms used
- mostly ACUTE assays
- chronic: long exposures

Field and in situ observations, epidemiological studies

Hazard assessment

Traditionally – Evaluation of adverse effects using the whole organism models

Hazard assessment

Traditionally – Evaluation of adverse effects using the whole organism models

Mode of Action (omics) toxicity testing

Omes is not only for humans ...

MoA and omics are supported by strategic documents & organizations

Toxicity Testing in the 21st Century: A Vision and a Strategy **US National Academies of Sciences** http://www.nap.edu/catalog/11970.html

LEARN THE ISSUES | SCIENCE & TECHNOLOGY | LAWS & REGULATIONS | ABOUT EL

Computational Toxicology Research

You are here: EPA Home » Research & Development » CompTox » ToxCast™

Key Links

CompTox Home **Basic Information** Organization

Research Projects Chemical Databases CompTox Events

С

ToxCast™

Screening Chemicals to Predict Toxicity Faster and Better

TOXICITY TESTING IN THE 21ST CENTURY A VISION AND A STRATEGY

ToxCast rapid automated chemical tests

Human Disease Outcome

How ToxCast Fits Into CompTox Research

Hazard assessment

Traditionally – Evaluation of adverse effects using the whole organism models

Key task/question: How to link MECHANISTIC INFORMATION with APICAL ENDPOINTS ?

Adverse Outcome Pathways

The EXISTING KNOWLEDGE is used to link the two anchor points: Molecular Initiating Event (MIE) and Adverse Outcome (AO) via a series of intermediate steps: Key Events

Ankley, G. T., R. S. Bennett, et al. (2010) "Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment." <u>Environmental Toxicology and Chemistry</u> **29**(3): 730-741.

Concept of "Adverse Outcome Pathway" (AOP)

AOP = Global strategy with support from OECD, EU, USA

$\langle \bullet \rangle$	OECD.org	Data	Publication	s More sites	•	News	vs Job vacancies		
BETTER PO	OECD LICIES FOR BETTER LIVES					> A S	to Z Search oecd.org	٩	
OECD	Home About	Countries ~	Topics ~				> Fr	rançais	

OECD Home > Chemical safety and biosafety > Testing of chemicals > Adverse Outcome Pathways, Molecular Screening and Toxicogenomics

> Testing of chemicals	Adverse Outcome Pathways, Molecular Screening and
> Assessment of chemicals	Toxicogenomics
> Risk management of chemicals	
 Chemical accident prevention, preparedness and response 	WHAT'S NEW
> Pollutant release and transfer register	SURVEY ON ADVERSE OUTCOME PATHWAYS (AOPS) TO IDENTIFY DEVELOPMENT PRIORITIES The OECD has launched a survey to explore the utility of AOPs for regulatory assessment of chemicals and to identify development priorities. The objective is to collect
Safety of manufactured nanomaterials	feedback on how the AOP concept and/or existing AOPs are already being used for regulatory purposes, to understand where they fall short regarding their utility, and to identify what directions and priorities future AOP development work should embrace to increase their impact on regulatory toxicology and chemical risk assessment.
nanomateriais	The survey is mainly for chemical safety regulators who are experiencing a transition in their work towards an increased use of 'alternative' methods and AOPs. However, stakeholders that come from the regulated community and environmental NGOs are also welcome to participate
 Agricultural pesticides and biocides 	 The survey is now closed. Thank you for your submissions.
> Biosafety - BioTrack	

http://www.oecd.org/chemicalsafety/testing/projects-adverse-outcome-pathways.htm

Centrum pro výzkum toxických látek v prostředí

Adverse Outcome Pathway Knowledge Base (AOP-KB)

AOP-KB || Background || How to contribute |

Please click on any of the AOP-KB elements you want to use. Please note that the AOP-KB is work in progress and more elements will become available over time.

http://aopkb.org/

Key documents

OECD Guidance document and a template for developing and assessing adverse outcome pathways (Series No. 184, Series on Testing and Assessment)

Handbook for AOP developers

AOP Wiki

- <u>https://aopkb.org/aopwiki/index.php/Main_Page</u>
- Wiki-based platform for development of AOPs
- Only members of an OECD AOP development
 project can create / edit AOPs

What AOPs are now in AOP Wiki – Feb 2020 ?

OECD Endorsed (WNT and TFHA)	14	 Alkylation of DNA in male pre-meiotic germ cells leading to heritable mutations Aromatase inhibition leading to reproductive dysfunction
EAGMST Under Review & for comments	20	
EAGMST Under Development	34	
SAAOP AOP Under Development	130+	

ERDC

Total 269 AOPs

СС

- OECD Extended Advisory Group on Molecular Screening and Toxicogenomics (EAG MST)
- The Working Group of the National Coordinators of the Test Guidelines Programme (WNT)

https://aopwiki.org/aops

Adverse Outcome

saop

Pathway Wiki

AOP Example: MIE aromatase inhibition

Fig. 3. An adverse outcome pathway in fish [2,50]. Aromatase inhibitor example. (A) Aromatase inhibition by fadrozole; (B) Reduction in circulating estradiol; (C) Reduction in circulating vitellogenin (Vtg); (D) Histopathology of ovarian tissue, top panel normal ovary, bottom panel fadrozole treated; note oocyte atresia; (E) Adverse outcome on egg production–fecundity (© Elsevier, Used with permission,)

Environmental Toxicology and Chemistry, Vol. 30, No. 1, pp. 64-76, 2011

Aromatase inhibition leading to reproductive dysfunction (in fish)

https://aopwiki.org/wiki/index.php/Aop:25

AOP Example from RECETOX: Modulation of RAR/RXR \rightarrow developmental toxicity in fish

Kidd, K.A. et al. 2007. Collapse of a fish population following exposure to a synthetic estrogen. Proceedings of the National Academy of Sciences 104(21):8897-8901

6888

<u>§888</u>

<u> </u>

<u> </u> Number

<u> </u>

<u>\$888</u>

<u> </u>

50

50

50

50

50

50

50

0

5 ng/L (!) 7 years

Controls

Age 0

1999

2000

2001

2002

2003

2004

2005

+Ethinylestradiol

Keywords to remember and understand

- What is meant by the "mechanism of action" (or "mode of action") in toxicology?
- Why is it necessary to understand MoAs? What is the AOP concept?
- What is toxicokinetics? What is ADME?
- What is toxicodynamics?
- What is the relationship between the exposure and the effect?
- What are the different types of toxicity?
- How can the (toxic) effect be measured / assessed?
- What types of "bioassays" are available to study toxicity and/or MoA?
- How is the result (i.e. "toxicity") described in numbers?

