

BIOMARKERS AND TOXICITY MECHANISMS 07 – Mechanisms Metabolism & Detoxification

Luděk Bláha, PřF MU, RECETOX www.recetox.cz

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

What processes are beyond toxicokinetics?

Toxicokinetics ... EXPOSURE → Determines the final dose & eventual toxicity

Metabolism and detoxification

- Chemicals enter body ... mostly via food
- Pass directly through liver
 → main metabolism organ

Detoxification

- Basic principle of detoxification
 - elimination of hydrophobic compounds from body→ formation of more polar & soluble products
- Two principal phases in metabolism (Phase I & II)
 - well studied in vertebrates (mammals)
 - liver: major organ involved in detoxification
- Plants
 - similar oxidating enzymes as described (cytochrom oxidase, phenol oxidase, peroxidase...)
- Phase III elimination both from cell & body

Importance of nutrients and vitamins in detoxification

Phase I

- Key enzymes MFOs = mixed function oxidases / oxygenases
- Membrane bound to Endoplasmic Reticulum
 - membrane vesicles "microsomes" = S-9 fraction can be extracted from cells

Detoxification - Phase I

- Key principle enzymes are cytochromes P450 (CYPs)
 - Haem (porfyrin) containing enzymes
 - superfamily of more than 150 genes several classes and subclasses
 - different substrate specificity; structure ...
- Some examples ... Diverse functions
 - Cytochrome P450 1A (CYP1A)
 - basic for detoxification of hydrophobic environmental contaminants
 - Cytochrome P450 19A (CYP19)
 - "aromatase" involved in synthesis of estradiol (aromatization of testosterone)

CYPs and their functions

Types of reactions catalyzed by CYPs (and Phase II enzymes)

Phase	Туре	Reaction (gene)	Substrate C
1	MFO	O-Deethylase (CYP1A1)	7-Ethoxycoumarin
1	MFO	Aryl hydrocarbon hydroxylase (CYP1A1)	PAH
1	MFO	Hydroxylase (CYP3A7)	Cortisol
L	MFO	Aromatase (CYP19)	Androgens
1	MFO	Cholesterol side-chain cleavage (CYP11A)	Cholesterol
1	MFO	Estrogen catechol formation,	Estrogens
		2-Hydroxylation (CYP1A1)	
		4-Hydroxylation (CYP1B1)	
1	MFO	25-Hydroxycholecalciferol hydroxylase	25-Hydroxycholecalciferol
1	Oxidoreductase	17β-Hydroxydehydrogenase	
		Type 1	Estrone to estradiol
		Type 2	Estradiol to estrone
1	Oxidoreductase	11	Cortisol/cortisone
1	Oxidation	Dehydrogenase	Alcohol/acetaldehyde
1	Oxidation	Monoamine	Norepinephrine
	Sulfatase	Sulfate cleavage	Steroid sulfates
11	Conjugation	GST	Epoxides
	Conjugation	Catechol-O-methyltransferase	Catecholamines, catechol estrogens

Highlighted = will be discussed also later

CYPs - example: steroid hormone synthesis

OH

'"H

H₃C

Ĥ

Н

Ē

CYP450 overview

Family	Function	Members	Names
CYP1	drug and steroid (especially estrogen) metabolism	3 subfamilies, 3 genes, 1 pseudogene	CYP1A1, CYP1A2, CYP1B1
CYP2	drug and steroid metabolism	13 subfamilies, 16 genes, 16 pseudogenes	CYP2A6, CYP2A7, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2F1, CYP2J2, CYP2R1, CYP2S1, CYP2U1, CYP2W1
СҮРЗ	drug and steroid (including testosterone) metabolism	1 subfamily, 4 genes, 2 pseudogenes	СҮРЗА4, СҮРЗА5, СҮРЗА7, СҮРЗА43
CYP4	arachidonic acid or fatty acid metabolism	6 subfamilies, 11 genes, 10 pseudogenes	CYP4A11, CYP4A22, CYP4B1, CYP4F2, CYP4F3, CYP4F8, CYP4F11, CYP4F12, CYP4F22, CYP4V2, CYP4X1, CYP4Z1
CYP5	thromboxane A2 synthase	1 subfamily, 1 gene	CYP5A1
CYP7	bile acid biosynthesis 7-alpha hydroxylase of steroid nucleus	2 subfamilies, 2 genes	CYP7A1, CYP7B1
CYP8	varied	2 subfamilies, 2 genes	CYP8A1 (prostacyclin synthase), CYP8B1 (bile acid biosynthesis)
CYP11	steroid biosynthesis	2 subfamilies, 3 genes	CYP11A1, CYP11B1, CYP11B2
CYP17	steroid biosynthesis, 17-alpha hydroxylase	1 subfamily, 1 gene	CYP17A1
CYP19	steroid biosynthesis: aromatase synthesizes estrogen	1 subfamily, 1 gene	CYP19A1
CYP20	unknown function	1 subfamily, 1 gene	CYP20A1
CYP21	steroid biosynthesis	2 subfamilies, 2 genes, 1 pseudogene	CYP21A2
CYP24	vitamin D degradation	1 subfamily, 1 gene	CYP24A1
CYP26	retinoic acid hydroxylase	3 subfamilies, 3 genes	CYP26A1, CYP26B1, CYP26C1
CYP27	varied	3 subfamilies, 3 genes	CYP27A1 (bile acid biosynthesis), CYP27B1 (vitamin D3 1-alpha hydroxylase, activates vitamin D3), CYP27C1 (unknown function)
СҮРЗЭ	7-alpha hydroxylation of 24-hydroxycholesterol	1 subfamily, 1 gene	CYP39A1
CYP46	cholesterol 24-hydroxylase	1 subfamily, 1 gene	CYP46A1
CYP51	cholesterol biosynthesis	1 subfamily, 1 gene, 3 pseudogenes	CYP51A1 (lanosterol 14 alpha demethylase)

Hydroxylation (oxidation) mechanism – key in "detoxification"

Scheme 3.1. Outside: suggested sequence of hydroxylation reactions carried out by cytochrome P-450. Inside: schematic presentation of the configuration of the P-450 prosthetic group.

Examples of CYP mediated reactions

Examples of CYP mediated reactions

Examples of CYP mediated reactions

Parathion

Paraoxon

Desulfuration

Reduction

Azobenzine

Aniline

Hydrolysis

CYPs and BIOACTIVATION pro-mutagen (procarcinogen) \rightarrow mutagen (carcinogen)

Benzo[a]pyrene

CYPs and BIOACTIVATION of procarcinogen

CYPs and BIOACTIVATION – AFLATOXIN-A

CYPs and BIOACTIVATION – ethanol

CYPs and toxicity of drugs

Example - PARACETAMOL toxicity

Detoxification – Phase II

Key reactions = conjugations

- Reactive xenobiotics or metabolites formed in phase I with endogeneous substrates
 - saccharides and their derivatives glucuronic acid,
 - aminoacids (glycine)
 - peptides: glutathione (GSH)
- Forming water soluble AND "nontoxic" products (conjugates)
- Phase II enzymes ("transferases"):
 - glutathion S-transferase (GST)
 - UDP-glucuronosyltransferase (UDP-GTS)
 - epoxid hydrolase (EH)
 - sulfotransferase (ST)

Reaction	Enzyme	Localizationa	Substrates
H ₂ O	Epoxide hydrolase	Microsomes Cytosol	Epoxides
Glutathione	Glutathione transferases	Microsomes	Electrophiles
Glucuronic acid (UDPGA) ^b	Glucuronyl transferases	Microsomes	Phenols, thiols, amines, Carboxylic acids
Sulfuric acid (PAPS) ^b	Sulfotransferase	Cytosol	Phenols, thiols, amines
Methyl Group (SAM) ^b	N- and O- methyl transferases	Cytosol Microsomes	Phenols, amines
Acetic acid (Acetyl-CoA) ^b	N-acetyl transferases	Cytosol	Amines
Amino acids (Acetyl-CoA, taurine, glycine)	Amino acid transferases	Microsomes	Carboxylic acids

Table 3. Major phase II detoxification activities in humans

v prosercei

Glutathione

major donor of SH (thiol) groups in cells (MW ~ 300 g/mol)
concentrations in tissues and blood up to 5 mM (1.5 g/L)

Examples of conjugation reactions

Xenobiotic conjugations with GSH

3,4-Dichloronitrobenzene

v prostředí

Phase III – elimination / membrane transport

- Phase III transporters
 - ATP-binding cassette transporters (ABC transporters)
 - protein superfamily (one of the largest, and most ancient in all extant phyla from prokaryotes to humans)
 - transmembrane proteins transport across extra- and intracellular membranes (metabolic products, lipids, sterols, drugs)

ABC transporters - examples

- MRP (MDR) multidrug resistance-associated protein family
- OATP Organic Anion Transporting Polypeptide
- P-glycoprotein

ABC

one of the resistance mechanisms of tumour cells to anticancer drugs

Nature Reviews | Cancer

ABC: one of the resistance mechanisms of bacteria to antibiotics [both via Physiological and Evolutionary adaptation mechanisms]

toxických látek v prostředí

Mechanism of evolutionary adaptation

1. Random mutation \rightarrow 2. Population change (selection) by the environment

Example of evolutionary adaptation: Development of resistance to pesticides

Constitutive vs Induced detoxification

- Detoxification enzymes expression
 - Constitutive low background levels (always present)
 - − Presence of substrates → INDUCTIONS of levels/activities
 - CYP1A inductin via Ah-receptor (AhR)
 - Substrate: hydrophobic organochlorine compounds (PCDDs/Fs, PAHs PCBs ...) [see also: lectures on nuclear receptors]
 - Other CYPs
 - Drugs → inductions of specific CYP classes
 - Phase II enzymes
 - Substrates = reactive toxicants, metabolites from Phase I
 - ABC transporters
 - Induction by respective chemicals (drugs etc)

• INDUCED DETOXIFICATION:

- "Physiological adaptation" to toxicants
- Measurements used as "Biomarkers" (of exposure, susceptibility, effect)

CYP1A induction – role of AhR (discussed later)

Figure 5. The mechanism of CYP1A induction mediated through the aryl hydrocarbon receptor (AhR). (Figure by M. Engwall).

Summary – "toxic consequences" of detoxification

BIOACTIVATION

- activation of pro-mutagens/pro-carcinogens etc.
- increasing side adverse effects of certain drugs
- Increase in oxidative reactions oxidative stress
 - production of Reactive Oxygen Species (ROS) (see oxidative damage and stress lectures)
- Side toxic effects (see nuclear receptor lectures)
 - e.g. increased degradation of endogeneous compounds (retinoids – regulatory molecules degraded by CYP1A
 - Crosstalk with other mechanisms & receptors
- Energy (ATP) depletion
 - chronic inductions of detox enzymes
 → permanent extra energetic demand
- Development of resistence physiological adaptation or evolutionary adaptation to toxic compounds
 - Loss of efficiency of anticancer drugs, antibiotics etc.
 - Resistance of pests

Toxic effects associated with increased detoxification (metabolism)

