Cohort studies

Example

Parents smoke at home

Parents don't smoke at home

Some characteristics of cohort studies

- Longitudinal study: typically decades of follow-up in a large sample (5,000 100,000)
- Defined population: community, birth cohort, occupational groups
- High response rate = representative sample
- Measure level of exposure to risk factors
- Observe deaths, development of disease or some other condition e.g. high blood cholesterol

Cohort studies can serve several purposes

- Identify new cases of disease
- Provide direct measurement of risk of developing disease
- Compare disease risk in the groups over time
- Analytic studies, study aetiology (causation)
- Examine wide range of outcomes
- Record the life histories of sections of the population

- Tell us what circumstances predict development of disease or health improvement e.g. social position, disease risk score

direction of enquiry

Advantages of cohort study

- Temporal sequence is clear (exposure before disease)
- Less prone to 'reverse causality'
- Allows calculation of disease incidence
- Allows calculation of absolute and relative rates of disease
- Can examine many exposures simultaneously
- Multiple outcomes can be examined
- Less possibility for bias compared with case-control study

Disadvantages of cohort study

- Exposure may change over time
- Some diseases take years/decades to develop so may not be suitable
- Findings might not be relevant at end of study
- High costs because large sample and long duration
- Participant burden
- Loss to follow-up usually depends on outcome of interest (selection bias)
- Assessment of causality problematic in observational setting (although less problematic in cohort than other types of observational studies)

Cohort vs cross-sectional design

	Cohort	Cross-sectional
Investigate rare disease	_	_
Investigate rare exposure	++	-
Study multiple exposures	+++	++
Assess temporality	++	-
Direct measure of incidence	+++	-

Adapted from "Basic Epidemiology", Bonita et al. WHO 2006.

Some well-known cohort studies

- British Birth Cohorts
 - Millennium Cohort Study
 - I970 British Cohort Study (BCS70)
 - 1958 National Child Development Study
 - I946 National Survey of Health and Development
- Studies of specific diseases (e.g. cardiovascular disease):
 - Whitehall II study
 - Framingham Study
 - HAPIEE (Health, Alcohol and Psychosocial Indicators in Eastern Europe)
- Studies of specific exposures/groups of population
 - War veterans
 - Nurses Health Study

Prospective cohort study

- Identify a group of individuals and follow them over time
- Usually to assess whether exposure affects incidence of outcome/disease.

Historical/retrospective cohort study

- Identify a group and obtain records/information from earlier time
- The aim is still to compare exposed and unexposed
- The exposure and development of disease already happened

Advantages & disadvantages of <u>retrospective</u> cohort studies

Advantages

Quick

Disadvantages

- Measurement error from poor quality records
- Exposure not measured exactly as wish

Open cohorts

• People move in and out of the study

Closed cohorts

- Participant population is fixed at baseline
- People can only exit study (withdrawal, death)

Representativeness in cohort studies

Validity of estimates rests on sample being representative. This is influenced by:

- Selection of study sample & response rate
- Poor measurement of exposure & outcome
- Loss to follow-up
 - A significant challenge for longitudinal studies

The 1970 British Cohort Study, dates of contact & sample size

Year	Age (yr)	Target sample	Achieved sample
1970	Birth	17 287	16 571
1975	5	16 810	13 071
1980	10	17 275	14 874
1986	16	17 529	11 621
1996	26	17 329	9003
2000	30	17 050	11 261
2004	34	13 107	9656

Cohort profile: 1970 British Birth Cohort (BCS70). Elliott & Shepherd. <u>Int J Epidemiol</u>. 2006;35(4):836-43.

Some reasons why some people drop out of longitudinal studies

- People who drop out more likely to live alone, have lower SES, engage in fewer social activities, be cognitively impaired and have poorer physical functioning
- Study too time-consuming
- Contact too frequent
- Questionnaires too difficult, repetitive
- Travel to screening clinic difficult
- Dislike of medical tests
- Tests not seen as relevant

Summary of cohort studies

- Exposure measured usually in healthy individuals
- Follow up
- Incidence
- Time consuming & expensive
- Temporality clear
- Possibly the "best" observational design

Case-control studies

Example

Pneumonia in last year Healthy children

Case-control studies are

- Ideal for rare diseases
- Usually "retrospective" in design
- Relatively quick
- Relatively cheap

Basic steps in a case-control study: I. Cases

- Definition of a case (symptoms; duration...)
- Selection of cases (patients with certain disease condition)
 - Source: Hospital / outpatient clinic / etc
 - Prevalent cases / Incident cases

Basic steps in a case-control study 2. Controls

- Definition of controls (subjects without the condition)
- Selection of controls (hospital, community...)

• Hospital controls:

- Feasible
- Willing to participate
- Might be of the same social and geographical background as the cases
- Hospitalized people differ from the general population (might have a higher or lower level of exposure to the risk factor under study compared to the general population)

• Community controls:

- May reduce selection bias
- Low participation rates
- Time consuming and costly
- Recall bias

Basic steps in a case-control study

- Measurement of exposure
- Comparing frequency of exposure in cases and controls

	"Now"	
	Cases	
	Controls	
Time		

How do we quantify the association in a case control study?

- Remember from earlier: Relative risk = [a/(a+b)] / [c/(c+d)]
- If the disease is rare, then a would be very small compared to b therefore:
- [a/b] / [c/d], the odds ratio, would be approximately close to relative risk [a/(a+b)] / [c/(c+d)]

Example from a cohort study that shows odds ratio approximates estimates of relative risk:

	Disease +	Disease -	
Exposed	20	980	1000
Not Exposed	10	990	1000

- Relative risk = [20/1000] / [10/1000] = 2.00
- Odds ratio = [20/980] / [10/990] = 2.02

Relative risk <u>CANNOT</u> be estimated from case-control studies. Only odds ratio can be calculated

Why OR and not RR?

	Cases	Controls	TOTAL	Cases	Controls	TOTAL
Exp+	30	100	130	30	300	330
Exp-	10	100	110	10	300	310

RR=(30/130)/(10/110)=2.54 OR=(30/100)/(10/100)=3.00 RR=(30/330)/(10/310)=2.82 OR=(30/300)/(10/300)=3.00

- Different sampling fraction among cases and controls
- RR is influenced by sampling fraction among controls while OR is same (and is unbiased)

Matched case-control studies

- Cases and controls often differ in important aspects (age, sex, ethnicity, behaviours...)
- These can confound the study
- One way to eliminate such differences is matching controls to cases on these factors
- More than I control per case can be used

Example: matching in the study of hip fracture

- Risk of hip fracture depends on age and sex; men and older people are more likely to suffer; these factors have to be controlled
- Matching cases and controls on age and sex will eliminate the confounding by these factors
- For each case [male; age 74] recruit one or more controls [male; age 74]
- For each case [female; age 81] recruit one or more controls [female; age 81] etc

Other ways to control confounding

- Matching may be impractical (if there are many strata, it is difficult to find controls)
- Adjustment in analysis
 - stratified analysis (eg within drinkers and nondrinkers)
 - multi-variable analysis ("adjusted" odds ratios)

Nested case-control study

- Using an existing cohort study
- Cases: subjects who developed the disease
- Controls: a random sample of subjects who did not develop the disease
- Rationale: to reduce cost with lab measurements
- Advantage: no reporting / measurement bias

Strengths of case-control studies

- Quick (cases already exist, no need to wait)
- Cheap (not necessary to examine large number of people)
- Can examine many exposures
- Suitable to study rare diseases
- Suitable to study stable exposures (eg genetic markers)

Weaknesses of case-control studies

- Not suitable for rare exposure
- Cannot calculate incidence risk or death rates
- Prone to selection bias
- Prone to misclassification of exposure
- Prone to reverse causation (people with disease may have changed their behaviour)

Summary of case-control studies

- Cases vs. controls (current status)
- No follow up
- Good for rare outcomes
- Asking about exposure in past
- No incidence or prevalence
- No need to wait for cases \rightarrow quick
- Temporality may be a problem
- Good for exposures stable over time