M6140 Topology Exercises - 1st Week (2020)

1 Closed Sets

Exercise 1. Prove that an arbitrary intersection of closed sets is closed and that a finite union of closed sets is closed.

Exercise 2. Show that a subset F of a topological space X is closed iff for each $x \notin F$ there exists an open set $U \ni x$ such that $U \cap F = \emptyset$.

Exercise 3. Let A, B be arbitrary subsets of a topological space X. Prove the following properties of the closure.

- (i) $\overline{\emptyset} = \emptyset$,
- (ii) $\overline{A \cup B} = \overline{A} \cup \overline{B}$,
- (iii) $A \subseteq \overline{A}$,
- (iv) $A \subseteq B$ implies $\overline{A} \subseteq \overline{B}$,
- (v) $\overline{\overline{A}} = \overline{A}$.

An operator on an arbitrary power set is called a *closure operator* if it satisfies the properties (iii), (iv), (v), thus we now know that $\overline{(-)}: \mathcal{P}(X) \to \mathcal{P}(X)$ is a closure operator.

2 Topologies

Exercise 4. An *Alexandrov topology* is a topology in which an arbitrary intersection of open sets is always open.

- (a) Let X be a preordered set¹. Prove that there is an Alexandrov topology on X such that the open sets in X are precisely the lower sets² in X.
- (b) Let X be a topological space whose topology is Alexandrov. Prove that there is a preorder \leq on X defined by: $x \leq y$ iff $y \in \overline{\{x\}}$.
- (c) Prove that these two correspondences are inverse to each other.

Exercise 5. Consider the subsets of \mathbb{Z} of the form $S(a, b) := \{an + b \mid n \in \mathbb{Z}\}$ of \mathbb{Z} , where a is a non-zero integer and b is an integer. Define a subset U of \mathbb{Z} to be open iff for each $b \in U$ there exists a non-zero integer a such that $S(a, b) \subseteq U$.

 $^{^{1}\}mathrm{A}\ preorder$ is a reflexive and transitive relation.

 $^{{}^{2}}A$ lower set in a preordered set is a subset such that if an element belongs to the subset, then all the lower elements also belong to the subset.

- (a) Show that this defines a topology on \mathbb{Z} . This topology is called the *evenly spaced integer topology* or the *Furstenberg topology*.
- (b) Show that each set S(a, b) is clopen.
- (c) Show that each open set is either empty or infinite.
- (d) Show that the complement of $\{-1, 1\}$ is $\bigcup_{p \text{ prime}} S(p, 0)$.
- (e) Conclude that there exist infinitely many primes.

Exercise 6. Suppose that P is a poset. Define a subset U of P to be open iff it is an upper set and each directed set³ in P whose supremum belongs to U has a non-empty intersection with U.

- (a) Show that this defines a topology on P. This topology is called the Scott topology.
- (b) Show that a subset of P is closed iff it is a lower set that is closed under directed suprema in P.
- (c) Show that a mapping $P \to Q$ between posets is continuous iff it preserves directed suprema.

Exercise 7. Let k be an algebraically closed field⁴ and let n be a positive integer. Define a subset F of \mathbb{k}^n to be closed iff there exists an ideal I in the ring of polynomials over k of n variables such that F = V(I), where $V(I) := \{ \mathbf{x} \in \mathbb{k}^n \mid \forall f \in I : f(\mathbf{x}) = 0 \}$. Show that in this way we obtain a topology on \mathbb{k}^n . This topology is called the *Zariski topology*.

3 Continuous Maps

Exercise 8. Suppose that X and Y are topological spaces. Prove that if X is discrete, then each mapping $f: X \to Y$ is continuous. Also prove that if Y is indiscrete, then each mapping $f: X \to Y$ is continuous.

Exercise 9. Let $f: X \to Y$ be a continuous map. Show that the preimage of a closed set in Y is closed in X.

Exercise 10. Show that a composition of continuous maps is continuous.

Exercise 11. Prove that \mathbb{Z} and \mathbb{Q} aren't homeomorphic. Both topological spaces are viewed as subspaces of \mathbb{R} .

Exercise 12. A mapping $f: X \to Y$ between topological spaces is called *continuous at a point* $x \in X$ if for each neighbourhood N of the point f(x) its preimage $f^{-1}(N)$ is a neighbourhood of x. Show that a mapping $f: X \to Y$ between topological spaces is continuous iff it is continuous at each point of X.

 $^{^{3}}$ A *directed set* in a poset is a non-empty subset such that each pair of elements of the subset has an upper bound in the subset.

 $^{{}^{4}}A$ field is called *algebraically closed* if each non-constant polynomial with coefficients from this field has a root in this field.