M6140 Topology Exercises - 2nd Week (2020)

1 Subspaces

Exercise 1. Let A be a subspace of a topological space X. Prove that closed sets in A are precisely the intersections of A with closed sets in X.

Exercise 2. Let A be a subspace of a topological space X and let \mathcal{B} be a basis of X. Show that $\{U \cap A \mid U \in \mathcal{B}\}$ is a basis of A.

Exercise 3. Let X be a topological space. Prove that a subset U of X is open iff each point of U has an open neighborhood V such that $U \cap V$ is open in V.

Exercise 4. Let A be a subspace of a topological space X and let $\iota: A \to X$ be the inclusion. Show that a mapping $f: Y \to A$ is continuous iff the composition $\iota \circ f: Y \to X$ is continuous.

2 Products

Exercise 5. Consider a product $\prod_{i \in I} X_i$ of topological spaces. Prove that each projection map $p_j \colon \prod_{i \in I} X_i \to X_j$ is an open map, i.e. sends open sets to open sets.

Exercise 6. Consider a product $\prod_{i \in I} X_i$ of topological spaces. Prove that if for each $i \in I$ we have a closed set $C_i \subseteq X_i$, then $\prod_{i \in I} C_i$ is closed in $\prod_{i \in I} X_i$.

Exercise 7. Let A be a subspace of a topological space X and let B be a subspace of a topological space Y. Show that the product topology on $A \times B$ coincides with the subspace topology when viewed as a subspace of $X \times Y$.

Exercise 8. Consider the product $\mathbb{R}^{\mathbb{N}} = \prod_{\mathbb{N}} \mathbb{R}$ of sets \mathbb{R} . Give each component \mathbb{R} the Euclidean topology. Consider the diagonal mapping $f : \mathbb{R} \to \mathbb{R}^{\mathbb{N}}$, f(x) = (x, x, x, ...).

- (a) Prove that if $\mathbb{R}^{\mathbb{N}}$ has the product topology, then f is continuous.
- (b) Prove that if $\mathbb{R}^{\mathbb{N}}$ has the box topology, then f is not continuous.

3 Disjoint Unions

Exercise 9. Show that a disjoint union of discrete spaces is discrete.

Exercise 10. Consider a disjoint union $\coprod_{i \in I} X_i$ of topological spaces. Show that each "injection" $\iota_j \colon X_j \to \coprod_{i \in I} X_i$ is both an open map and a closed map.

4 Quotient Spaces

Exercise 11. Consider the relation on \mathbb{R} given by $x \sim y$ iff x - y is an integer. Prove that this is an equivalence relation and that the quotient space X/\sim is homeomorphic to the one-dimensional sphere.

Exercise 12. Let \sim be an equivalence relation on a topological space X and let $p: X \to X/\sim$ be the projection. Show that a mapping $f: X/\sim \to Y$ is continuous iff the composition $f \circ p: X \to Y$ is continuous.