## Tutorial 1-Global Analysis

21.09.2021

1. Consider the cylinder in $\mathbb{R}^{3}$ given by the equation

$$
M:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=R^{2}\right\},
$$

where $R>0$. Show that $M$ is a 2 -dimensional submanifold in $\mathbb{R}^{3}$. Moreover, give formula for local parametrizations and local trivializations, and a description of $M$ as a local graph.
2. Consider a double cone given by rotating a line through 0 of slope $\alpha$ around the $z$-axis in $\mathbb{R}^{3}$. It is given by the equation

$$
z^{2}=(\tan \alpha)^{2}\left(x^{2}+y^{2}\right) .
$$

At which points is the double cone a smooth submanifold of $\mathbb{R}^{3}$ ? Around the points where it is give a formula for local parametrizations and trivializations, and a description of it as a local graph.
3. Denote by $\operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ the $n m$-dimensional vector space of linear maps from $\mathbb{R}^{n}$ to $\mathbb{R}^{m}$. Consider the subset $\operatorname{Hom}_{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ of linear maps in $\operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ of rank $r$. Show that $\operatorname{Hom}_{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ is a submanifold of dimension of $r(n+m-r)$ in $\operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$.

Hint: Let $T_{0} \in \operatorname{Hom}_{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ be a linear map of rank $r$ and decompose $\mathbb{R}^{n}$ and $\mathbb{R}^{m}$ as follows

$$
\begin{equation*}
\mathbb{R}^{n}=E \oplus E^{\perp} \quad \text { and } \quad \mathbb{R}^{m}=F \oplus F^{\perp} \tag{0.1}
\end{equation*}
$$

where $F$ equals the image of $T_{0}$ and $E^{\perp}$ the kernel of $T_{0}$, and $(\cdot)^{\perp}$ denotes the orthogonal complement. Note that $\operatorname{dim} E=\operatorname{dim} F=r$. With respect to (0.1) any $T \in \operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ can be viewed as a matrix

$$
T=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where $A \in \operatorname{Hom}(E, F), B \in \operatorname{Hom}\left(E^{\perp}, F\right), C \in \operatorname{Hom}\left(E, F^{\perp}\right)$ and $D \in \operatorname{Hom}\left(E^{\perp}, F^{\perp}\right)$. Show that the set of matrices $T$ with $A$ invertible defines an open neighbourhood of $T_{0}$ and characterize the elements in this neighbourhood that have rank $r$ (equivalently, the ones that have an $(n-r)$-dimensional kernel).

