Tutorial 4-Global Analysis

19.10.2021

1. We have seen in the first tutorial that $\operatorname{Hom}_{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ is a submanifold of $\operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ of dimension $r(n+m-r)$ in. For $X \in \operatorname{Hom}_{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ compute the tangent space

$$
T_{X} \operatorname{Hom}_{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right) \subset T_{X} \operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right) \cong \operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)
$$

2. We have seen in the first tutorial that the Grassmannian manifold $\operatorname{Gr}(r, n)$ can be realized as a submanifold of $\operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ of dimension $r(n-r)$. For $E \in \operatorname{Gr}(r, n)$ compute the tangent space

$$
T_{E} \operatorname{Gr}(r, n) \subset T_{E} \operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \cong \operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)
$$

3. Consider the general linear group $\mathrm{GL}(n, \mathbb{R})$ and the special linear group $\operatorname{SL}(n, \mathbb{R})$. We have seen that they are submanifolds of $M_{n}(\mathbb{R})=\mathbb{R}^{n^{2}}$ (even so called Lie groups) and that $T_{\mathrm{Id}} \mathrm{GL}(n, \mathbb{R}) \cong M_{n}(\mathbb{R})=\mathbb{R}^{n^{2}}$.
(a) Compute the tangent space $T_{\mathrm{Id}} \mathrm{SL}(n, \mathbb{R})$ of $\mathrm{SL}(n, \mathbb{R})$ at the identity Id.
(b) Fix $A \in \mathrm{SL}(n, \mathbb{R})$ and consider the conjugation $\operatorname{conj}_{A}: \operatorname{SL}(n, \mathbb{R}) \rightarrow \operatorname{SL}(n, \mathbb{R})$ by A given by $\operatorname{conj}_{A}(B)=A B A^{-1}$. Show that conj ${ }_{A}$ is smooth and compute the derivative $T_{\mathrm{Id}} \operatorname{conj}_{A}: T_{\mathrm{Id}} \mathrm{SL}(n, \mathbb{R}) \rightarrow T_{\mathrm{Id}} \mathrm{SL}(n, \mathbb{R})$.
(c) Consider the map $\operatorname{Ad}: \operatorname{SL}(n, \mathbb{R}) \rightarrow \operatorname{Hom}\left(T_{\mathrm{Id}} \mathrm{SL}(n, \mathbb{R}), T_{\mathrm{Id}} \mathrm{SL}(n, \mathbb{R})\right)$ given by $\operatorname{Ad}(A):=T_{\mathrm{Id}} \operatorname{conj}_{A}$. Show that Ad is smooth and compute $T_{\mathrm{Id}} \mathrm{Ad}$.
4. Consider \mathbb{R}^{n} equipped with the standard inner product of signature (p, q) (where $p+q=n$) given by

$$
\langle x, y\rangle:=\sum_{i=1}^{p} x_{i} y_{i}-\sum_{i=p+1}^{n} x_{i} y_{i}
$$

and the group of linear orthogonal transformation of $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$ given by

$$
\mathrm{O}(p, q):=\left\{A \in \mathrm{GL}(n, \mathbb{R}):\langle A x, A y\rangle=\langle x, y\rangle \quad \forall x, y \in \mathbb{R}^{n}\right\}
$$

(a) Show that

$$
\mathrm{O}(p, q)=\left\{A \in \mathrm{GL}(n, \mathbb{R}): A^{-1}=I_{p, q} A^{t} I_{p, q}\right\},
$$

where $I_{p, q}=\left(\begin{array}{cc}\mathrm{Id}_{p} & 0 \\ 0 & -\mathrm{Id}_{q}\end{array}\right)$, and that $\mathrm{O}(p, q)$ is a submanifold of $M_{n}(\mathbb{R})$. What is its dimension?
(b) Show that $\mathrm{O}(p, q)$ is a subgroup of $\mathrm{GL}(n, \mathbb{R})$ with respect to matrix multiplication μ and that $\mu: \mathbf{O}(p, q) \times \mathbf{O}(p, q) \rightarrow \mathbf{O}(p, q)$ is smooth (i.e. that $\mathbf{O}(p, q)$ is a Lie group.)
(c) Compute the tangent space $T_{\mathrm{Id}} \mathrm{O}(p, q)$ of $\mathrm{O}(p, q)$ at the identity Id.

