Tutorial 5-Global Analysis

26.10.2021

1. Suppose $M=\mathbb{R}^{3}$ with standard coordinates (x, y, z). Consider the vector field

$$
\xi(x, y, z)=2 \frac{\partial}{\partial x}-\frac{\partial}{\partial y}+3 \frac{\partial}{\partial z} .
$$

How does this vector field look like in terms of the coordinate vector fields associated to the cylindrical coordinates (r, ϕ, z), where $x=r \cos \phi, y=r \sin \phi$ and $z=$ z ? Or with respect to the spherical coordinates (r, ϕ, θ), where $x=r \sin \theta \cos \phi$, $y=r \sin \theta \cos \phi$ and $z=r \cos \theta$?
2. Consider \mathbb{R}^{3} with coordinates (x, y, z) and the vector fields

$$
\begin{gathered}
\xi(x, y, z)=\left(x^{2}-1\right) \frac{\partial}{\partial x}+x y \frac{\partial}{\partial y}+x z \frac{\partial}{\partial z} \\
\eta(x, y, z)=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+2 x z^{2} \frac{\partial}{\partial z}
\end{gathered}
$$

Are they tangent to the cylinder $M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\} \subset \mathbb{R}^{3}$ with radius 1 (i.e. do they restrict to vector fields on M)?
3. Suppose $M=\mathbb{R}^{2}$ with coordinates (x, y). Consider the vector fields $\xi(x, y)=y \frac{\partial}{\partial x}$ and $\eta(x, y)=\frac{x^{2}}{2} \frac{\partial}{\partial y}$ on M. We computed in class their flows and saw that they are complete. Compute $[\xi, \eta]$ and its flow? Is $[\xi, \eta]$ complete?
4. Let M be a (smooth) manifold and $\xi, \eta \in \mathfrak{X}(M)$ two vector fields on M. Show that
(a) $[\xi, \eta]=0 \Longleftrightarrow\left(\mathrm{Fl}_{t}^{\xi}\right)^{*} \eta=\eta$, whenever defined $\Longleftrightarrow \mathrm{Fl}_{t}^{\xi} \circ \mathrm{Fl}_{s}^{\eta}=\mathrm{Fl}_{s}^{\eta} \circ \mathrm{Fl}_{t}^{\xi}$, whenever defined.
(b) If N is another manifold, $f: M \rightarrow N$ a smooth map, and $\xi \tilde{\tilde{\xi}}$ and η are f-related to vector fields $\tilde{\xi}$ resp. $\tilde{\eta}$ on N, then $[\xi, \eta]$ is f-related to $[\tilde{\xi}, \tilde{\eta}]$.
5. Consider the general linear group $\operatorname{GL}(n, \mathbb{R})$. For $A \in \mathrm{GL}(n, \mathbb{R})$ denote by

$$
\begin{array}{ll}
\lambda_{A}: \operatorname{GL}(n, \mathbb{R}) \rightarrow \mathrm{GL}(n, \mathbb{R}) & \lambda_{A}(B)=A B \\
\rho_{A}: \mathrm{GL}(n, \mathbb{R}) \rightarrow \operatorname{GL}(n, \mathbb{R}) & \rho_{A}(B)=B A
\end{array}
$$

left respectively right multiplication by A, and by $\mu: \mathrm{GL}(n, \mathbb{R}) \times \mathrm{GL}(n, \mathbb{R}) \rightarrow$ $\mathrm{GL}(n, \mathbb{R})$ the multiplication map.
(a) Show that λ_{A} and ρ_{A} are diffeomorphisms for any $A \in \mathrm{GL}(n, \mathbb{R})$ and that

$$
T_{B} \lambda_{A}(B, X)=(A B, A X) \quad T_{B} \rho_{A}(B, X)=(B A, X A),
$$

where $(B, X) \in T_{B} \mathrm{GL}(n, \mathbb{R})=\left\{(B, X): X \in M_{n}(\mathbb{R})\right\}$.
(b) Show that

$$
T_{(A, B)} \mu((A, B),(X, Y))=T_{B} \lambda_{A} Y+T_{A} \rho^{B} X=(A B, A Y+X B)
$$

where $(A, B) \in \mathrm{GL}(n, \mathbb{R}) \times \mathrm{GL}(n, \mathbb{R})$ and $(X, Y) \in M_{n}(\mathbb{R}) \times M_{n}(\mathbb{R})$.
(c) For any $X \in M_{n}(\mathbb{R}) \cong T_{I d} \mathrm{GL}(n, \mathbb{R})$ consider the maps

$$
\begin{array}{ll}
L_{X}: \mathrm{GL}(n, \mathbb{R}) \rightarrow T \mathrm{GL}(n, \mathbb{R}) & L_{X}(B)=T_{I d} \lambda_{B}(I d, X)=(B, B X) . \\
R_{X}: \mathrm{GL}(n, \mathbb{R}) \rightarrow T \mathrm{GL}(n, \mathbb{R}) & R_{X}(B)=T_{I d} \rho_{B}(I d, X)=(B, X B) .
\end{array}
$$

Show that L_{X} and R_{X} are smooth vector field and that $\lambda_{A}^{*} L_{X}=L_{X}$ and $\rho_{A}^{*} R_{X}=R_{X}$ for any $A \in \mathrm{GL}(n, \mathbb{R})$. What are their flows? Are these vector fields complete?
(d) Show that $\left[L_{X}, R_{Y}\right]=0$ for any $X, Y \in M_{n}(\mathbb{R})$.

