Tutorial 6-Global Analysis

2.11.2021

1. Suppose $M=\mathbb{R}^{2}$ with coordinates (x, y). Consider the vector fields $\xi(x, y)=y \frac{\partial}{\partial x}$ and $\eta(x, y)=\frac{x^{2}}{2} \frac{\partial}{\partial y}$ on M. We computed in class their flows and saw that they are complete. Compute $[\xi, \eta]$ and its flow? Is $[\xi, \eta]$ complete?
2. Let M be a (smooth) manifold and $\xi, \eta \in \mathfrak{X}(M)$ two vector fields on M. Show that
(a) $[\xi, \eta]=0 \Longleftrightarrow\left(\mathrm{Fl}_{t}^{\xi}\right)^{*} \eta=\eta$, whenever defined $\Longleftrightarrow \mathrm{Fl}_{t}^{\xi} \circ \mathrm{Fl}_{s}^{\eta}=\mathrm{Fl}_{s}^{\eta} \circ \mathrm{Fl}_{t}^{\xi}$, whenever defined.
(b) If N is another manifold, $f: M \rightarrow N$ a smooth map, and ξ and η are f-related to vector fields $\tilde{\xi}$ resp. $\tilde{\eta}$ on N, then $[\xi, \eta]$ is f-related to $[\tilde{\xi}, \tilde{\eta}]$.
3. Suppose α_{j}^{i} for $i=1, \ldots, k$ and $j=1, \ldots, n$ are smooth real-valued functions defined on some open set $U \subset \mathbb{R}^{n+k}$ satisfying

$$
\frac{\partial \alpha_{j}^{i}}{\partial x^{k}}+\alpha_{k}^{\ell} \frac{\partial \alpha_{j}^{i}}{\partial z^{\ell}}=\frac{\partial \alpha_{k}^{i}}{\partial x^{j}}+\alpha_{j}^{\ell} \frac{\partial \alpha_{k}^{i}}{\partial z^{\ell}},
$$

where we write $(x, z)=\left(x^{1}, \ldots, x^{n}, z^{1}, \ldots, z^{k}\right)$ for a point in \mathbb{R}^{n+k}. Show that for any point $\left(x_{0}, z_{0}\right) \in U$ there exists an open neighbourhood V of x_{0} in \mathbb{R}^{n} and a unique C^{∞} _map $f: V \rightarrow \mathbb{R}^{k}$ such that

$$
\frac{\partial f^{i}}{\partial x^{j}}\left(x^{1}, \ldots, x^{n}\right)=\alpha_{j}^{i}\left(x^{1}, \ldots, x^{n}, f^{1}(x), \ldots, f^{k}(x)\right) \quad \text { and } \quad f\left(x_{0}\right)=z_{0} .
$$

In the class/tutorial we proved this for $k=1$ and $j=2$.
4. Which of the following systems of PDEs have solutions $f(x, y)$ (resp. $f(x, y)$ and $g(x, y)$) in an open neighbourhood of the origin for positive values of $f(0,0)$ (resp. $f(0,0)$ and $g(0,0))$?
(a) $\frac{\partial f}{\partial x}=f \cos y$ and $\frac{\partial f}{\partial y}=-f \log f \tan y$.
(b) $\frac{\partial f}{\partial x}=e^{x f}$ and $\frac{\partial f}{\partial y}=x e^{y f}$.
(c) $\frac{\partial f}{\partial x}=f$ and $\frac{\partial f}{\partial y}=g ; \frac{\partial g}{\partial x}=g$ and $\frac{\partial g}{\partial y}=f$.
5. Suppose $E \rightarrow M$ is a (smooth) vector bundle of rank k over a manifold M. Then E is called trivializable, if it isomorphic to the trivial vector bundle $M \times \mathbb{R}^{k} \rightarrow M$.
(a) Show that $E \rightarrow M$ is trivializable $\Longleftrightarrow E \rightarrow M$ admits a global frame, i.e. there exist (smooth) sections s_{1}, \ldots, s_{k} of E such that $s_{1}(x), \ldots, s_{k}(x)$ span E_{x} for any $x \in M$.
(b) Show that the tangent bundle of any Lie group G is trivializable.
(c) Recall that \mathbb{R}^{n} has the structure of a (not necessarily associative) division algebra over \mathbb{R} for $n=1,2,4,8$. Use this to show that the tangent bundle of the spheres $S^{1} \subset \mathbb{R}^{2}, S^{3} \subset \mathbb{R}^{4}$ and $S^{7} \subset \mathbb{R}^{8}$ is trivializable.

