Tutorial 7-8-Global Analysis

9./23. 11.2021

1. Suppose $E \rightarrow M$ is a (smooth) vector bundle of rank k over a manifold M. Then E is called trivializable, if it isomorphic to the trivial vector bundle $M \times \mathbb{R}^{k} \rightarrow M$.
(a) Show that $E \rightarrow M$ is trivializable $\Longleftrightarrow E \rightarrow M$ admits a global frame, i.e. there exist (smooth) sections s_{1}, \ldots, s_{k} of E such that $s_{1}(x), \ldots, s_{k}(x)$ span E_{x} for any $x \in M$.
(b) Show that the tangent bundle of any Lie group G is trivializable.
(c) Recall that \mathbb{R}^{n} has the structure of a (not necessarily associative) division algebra over \mathbb{R} for $n=1,2,4,8$. Use this to show that the tangent bundle of the spheres $S^{1} \subset \mathbb{R}^{2}, S^{3} \subset \mathbb{R}^{4}$ and $S^{7} \subset \mathbb{R}^{8}$ is trivializable.
2. Let V be a finite dimensional real vector space and consider the subspace of r linear alternating maps $\Lambda^{r} V^{*}=L_{\text {att }}^{r}(V, \mathbb{R})$ of the vector space of r-linear maps $L^{r}(V, \mathbb{R})=\left(V^{*}\right)^{\otimes r}$. Show that for $\omega \in L^{r}(V, \mathbb{R})$ the following are equivalent:
(a) $\omega \in \Lambda^{r} V^{*}$
(b) For any vectors $v_{1}, \ldots, v_{r} \in V$ one has

$$
\omega\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{k}\right)=-\omega\left(v_{1}, \ldots, v_{j}, \ldots, v_{i}, \ldots, v_{k}\right)
$$

(c) ω is zero whenever one inserts a vector $v \in V$ twice.
(d) $\omega\left(v_{1}, \ldots, v_{k}\right)=0$, whenever $v_{1}, \ldots, v_{k} \in V$ are linearly dependent vectors.
3. Let V be a finite dimensional real vector space. Show that the vector space $\Lambda^{*} V^{*}:=$ $\bigoplus_{r \geq 0} \Lambda^{r} V^{*}$ is an associative, unitial, graded-anticommutative algebra with respect to the wedge product \wedge, i.e. show that the following holds:
(a) $(\omega \wedge \eta) \wedge \zeta=\omega \wedge(\eta \wedge \zeta)$ for all $\omega, \eta, \zeta \in \Lambda^{*} V^{*}$.
(b) $1 \in \mathbb{R}=\Lambda^{0} V^{*}$ satisfies $1 \wedge \omega=\omega \wedge 1=1$ for all $\omega \in \Lambda^{*} V^{*}$.
(c) $\Lambda^{r} V^{*} \wedge \Lambda^{s} V^{*} \subset \Lambda^{r+s} V^{*}$.
(d) $\omega \wedge \eta=(-1)^{r s} \eta \wedge \omega$ for $\omega \in \Lambda^{r} V^{*}$ and $\eta \in \Lambda^{s} V^{*}$.

Moreover, show that for any linear map $f: V \rightarrow W$ the linear map $f^{*}: \Lambda^{*} W^{*} \rightarrow$ $\Lambda^{*} V^{*}$ is a morphism of graded unitlal algebras, i.e. $f^{*} 1=1, f^{*}\left(\Lambda^{r} W^{*}\right) \subset \Lambda^{r} V^{*}$ and $f^{*}(\omega \wedge \eta)=f^{*} \omega \wedge f^{*} \eta$.
4. Let V be a finite dimensional real vector space. Show that:
(a) If $\omega_{1}, \ldots, \omega_{r} \in V^{*}$ and $v_{1}, \ldots, v_{r} \in V$, then

$$
\omega_{1} \wedge \ldots \wedge \omega_{r}\left(v_{1}, \ldots, v_{r}\right)=\operatorname{det}\left(\left(\omega_{i}\left(v_{j}\right)\right)_{1 \leq i, j \leq r}\right) .
$$

In particular, $\omega_{1}, \ldots, \omega_{r}$ are linearly independent $\Longleftrightarrow \omega_{1} \wedge \ldots \wedge \omega_{r} \neq 0$.
(b) If $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is a basis of V^{*}, then

$$
\left\{\lambda_{i_{1}} \wedge \ldots \wedge \lambda_{i_{r}}: 1 \leq i_{1}<\ldots<i_{r} \leq n\right\}
$$

is a basis of $\Lambda^{r} V^{*}$.
5. Let V be a finite dimensional real vector space. An element $\mu \in L^{r}(V, \mathbb{R})$ is called symmetric, if $\mu\left(v_{1}, \ldots, v_{r}\right)=\mu\left(v_{\sigma(1)}, \ldots, v_{\sigma(r)}\right)$ for any vectors $v_{1}, \ldots, v_{r} \in V$ and any permutation $\sigma \in S^{r}$. Denote by $S^{r} V^{*} \subset \mu \in L^{r}(V, \mathbb{R})$ the subspace of symmetric elements in the vector space $L^{r}(V, \mathbb{R})$.
(a) For $\mu \in L^{r}(V, \mathbb{R})$ show that

$$
\mu \in S^{r} V^{*} \Longleftrightarrow \mu\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{k}\right)=\mu\left(v_{1}, \ldots, v_{j}, \ldots, v_{i}, \ldots, v_{k}\right)
$$

for any vectors $v_{1}, \ldots, v_{r} \in V$.
(b) Consider the map Sym : $L^{r}(V, \mathbb{R}) \rightarrow L^{r}(V, \mathbb{R})$ given by

$$
\operatorname{Sym}(\mu)\left(v_{1}, \ldots, v_{r}\right)=\frac{1}{r!} \sum_{\sigma \in S^{r}} \mu\left(v_{\sigma(1)}, \ldots, v_{\sigma(r)}\right) .
$$

Show that Image $(\operatorname{Sym})=S^{r} V^{*}$ and that $\mu \in S^{r} V^{*} \Longleftrightarrow \operatorname{Sym}(\mu)=\mu$.
6. Let V be a finite dimensional real vector space and set $S\left(V^{*}\right):=\oplus_{r=0}^{\infty} S^{r} V^{*}$ with the convention $S^{0} V^{*}=\mathbb{R}$ and $S^{1} V^{*}=V^{*}$. For $\mu \in S^{r} V^{*}$ and $\nu \in S^{t} V^{*}$ define their symmetric product by

$$
\mu \odot \nu:=\operatorname{Sym}(\mu \otimes \nu) \in S^{r+t} V^{*} .
$$

By blinearity, we extend this to a \mathbb{R}-bilinear map $\odot: S\left(V^{*}\right) \times S\left(V^{*}\right) \rightarrow S\left(V^{*}\right)$. Show that $S\left(V^{*}\right)$ is an unitial, associative, commutative, graded algebra with respect to the symmetric product \odot.
7. Suppose $p: E \rightarrow M$ and $q: F \rightarrow M$ are vector bundles over M. Show that their direct sum $E \oplus F:=\sqcup_{x \in M} E_{x} \oplus F_{x} \rightarrow M$ and their tensor product $E \otimes F:=$ $\sqcup_{x \in M} E_{x} \otimes F_{x} \rightarrow M$ are again vector bundles over M.
8. Suppose $E \subset T M$ is a smooth distribution of rank k on a manifold M of dimension n and denote by $\Omega(M)$ the vector space of differential forms on M.
(a) Show that locally around any point $x \in M$ there exists (local) 1-forms $\omega^{1}, \ldots, \omega^{n-k}$ such that for any (local) vector field ξ one has: ξ is a (local) section of $E \Longleftrightarrow$ $\omega_{i}(\xi)=0$ for all $i=1, \ldots, n-k$.
(b) Show that E is involutive \Longleftrightarrow whenever $\omega^{1}, \ldots, \omega^{n-k}$ are local 1-forms as in (a) then there exists local 1-forms $\mu^{i, j}$ for $i, j=1, \ldots, n-k$ such that

$$
d \omega^{i}=\sum_{j=1}^{n-k} \mu^{i, j} \wedge \omega^{j} .
$$

(c) Show

$$
\Omega_{E}(M):=\left\{\omega \in \Omega(M):\left.\omega\right|_{E}=0\right\} \subset \Omega(M)
$$

is an ideal of the algebra $(\Omega(M), \wedge)$. Here, $\left.\omega\right|_{E}=0$ for a ℓ-form ω means that $\omega\left(\xi_{1}, \ldots, \xi_{\ell}\right)=0$ for any sections $\xi_{1}, \ldots \xi_{\ell}$ of E.
(d) An ideal \mathcal{J} of $(\Omega(M), \wedge)$ is called differential ideal, if $d(\mathcal{J}) \subset \mathcal{J}$. Show that $\Omega_{E}(M)$ is a differential ideal $\Longleftrightarrow E$ is involutive.
9. Suppose M is a manifold and $D_{i}: \Omega^{k}(M) \rightarrow \Omega^{k+r_{i}}(M)$ for $i=1,2$ a graded derivation of degree r_{i} of $(\Omega(M), \wedge)$.
(a) Show that

$$
\left[D_{1}, D_{2}\right]:=D_{1} \circ D_{2}-(-1)^{r_{1} r_{2}} D_{2} \circ D_{1}
$$

is a graded derivation of degree $r_{1}+r_{2}$.
(b) Suppose D is a graded derivation of $(\Omega(M), \wedge)$. Let $\omega \in \Omega^{k}(M)$ be a differential form and $U \subset M$ an open subset. Show that $\left.\omega\right|_{U}=0$ implies $\left.D(\omega)\right|_{U}=0$.

Hint: Think about writing 0 as $f \omega$ for some smooth function f and use the defining properties of a graded derivation.
(c) Suppose D and \tilde{D} are two graded derivations such that $D(f)=\tilde{D}(f)$ and $D(d f)=\tilde{D}(d f)$ for all $f \in C^{\infty}(M, \mathbb{R})$. Show that $D=\tilde{D}$.
10. Suppose M is a manifold and $\xi, \eta \in \Gamma(T M)$ vector fields.
(a) Show that the insertion operator $i_{\xi}: \Omega^{k}(M) \rightarrow \Omega^{k-1}(M)$ is a graded derivation of degree -1 of $(\Omega(M), \wedge)$.
(b) Recall from class that $[d, d]=0$. Verify (the remaining) graded-commutator relations between $d, \mathcal{L}_{\xi}, i_{\eta}$:
(i) $\left[d, \mathcal{L}_{\xi}\right]=0$.
(ii) $\left[d, i_{\xi}\right]=d \circ i_{\xi}+i_{\xi} \circ d=\mathcal{L}_{\xi}$.
(iii) $\left[\mathcal{L}_{\xi}, \mathcal{L}_{\eta}\right]=\mathcal{L}_{[\xi, \eta]}$.
(iv) $\left[\mathcal{L}_{\xi}, i_{\eta}\right]=i_{[\xi, \eta]}$.
(v) $\left[i_{\xi}, i_{\eta}\right]=0$.

Hint: Use (c) from 2.

