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Chapter 1

Basic concepts of hypotheses testing
in nonparametric setup

1.1 Introduction

Let X = (X1,...,Xp) be a random vector (vector of observations) and let H and K be two
disjoint sets of probability distributions on (IR™, B™). We say that X fulfills the hypothesis if
the distribution of X belongs to H and that X fulfills the alternative if its distribution belongs
to K. We shall use the same symbols H and K either to denote the hypotheses or the set.
The hypothesis is usually the homogeneous, symmetric, independent of the statements while the
alternative means inhomogeneity, asymmetry, dependence etc.

The problem is to decide between the hypothesis and alternative on the basis of observations
X1,...,X,. Every rule, which assigns just one of the decisions ”to accept H” or "to reject H” to
any point x = (x1,...,Zp), is called the test (nonrandomized) of hypothesis H against alternative
K. Such test partitions the sample space X’ into two complementary parts: the critical region
(rejection region) A and acceptance region Ap. The test rejects H if x € Ax and accepts H if
xec Ap.

If we perform the test on the basis of observations x, then either our decision is correct or we
could make either of the following two kinds of errors:

(1) We reject H even if it is correct (error of the first kind);
(2) we accept H even if it is incorrect (error of the second kind).

It is desirable to use the test with the smallest possible probabilities of both errors. If the
true distribution P of X satisfies P € H, then the probability of the error of the 1st kind equals
(X € Agk) and suppcyr P(X € Ak) is called the size of the test with the critical region Ag. If
the true distribution ¢} of X satisfies 2 € K, then the probability of the error of the second kind
equals Q(X € Ag) =1 — Q(X € Ag). The probability 5(Q) = Q(X € Ak), Q € K is called the
power of the test against the alternative ). The function 5(Q) : K — [0,1] is called the power
function of the test. The desirable test maximizes the power function uniformly over the whole
alternative and has the small probability of the error of the first kind for all distributions from
the hypothesis.

The testing theory and searching for the optimum considerably simplifies when we supplement
the family of tests by the randomized tests. A randomized test rejects H with the probability
®(x) and accepts with probability 1 — ®(x) while observing x, where 0 < ®&(x) <1 Vx is the
test function. The set of randomized tests coincides with the set {®(x) : 0 < ® < 1} and hence
it is convex and weekly compact.
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If X has distribution P, then the test ® rejects H with the probability
Bo(P) = Ep(2(X) = [ 2()P()
Intuitively, the best test should satisfy

Bs(Q) = Eq(2(X)) :=max VQeK (L.1)

and simultaneously
Bs(P) =Ep(®(X)) :=min VP € H. (1.2)

Because no test satisfies both conditions simultaneously, the optimal test is defined in the following
way: Select a small number o, 0 < a < 1, called the significance level, and among all tests
satisfying

Bs(P)<a VPeH (1.3)

we look for the test satisfying (1.1). Such test, if it exists, is called the uniformly most powerful
test of size < «, briefly the uniformly most powerful a-test of H against K. The hypothesis
[alternative] is called simple if H [K] is a one-point set; otherwise it is called composite. The test
of a simple hypothesis against a simple alternative is given by the fundamental Neyman-Pearson
lemma.

THEOREM 1.1.1 NEYMAN-PEARSON LEMMA. Let P and @ be two probability distributions
with densities p and q with respect to some measure p (e.g., 4 = P + Q). Then, for testing the
simple hypothesis H : {P} against the simple alternative K : {Q}, there exists the test @ and a
constant k such that

Ep(®(X)) =« (1.4)
and
|1 if g(x) > k.p(x)
®(x) = { 0 i gox) < kp(o). (1.5)

This test is the most powerful a-test of H against K.

1.2 Principle of invariance in hypotheses testing

Let g be a 1:1 transformation X : X. We say that the problem of testing of H against K is
invariant with respect to g if g retains both H and K, i.e.

X satisfies H iff ¢X satisfies H
X satisfies K iff gX satisfies K.

If the problem of testing H against K is invariant with respect to the group G of transforma-
tions of X onto X, then we could naturally consider only the tests which are equally invariant,
i.e. the tests ® satisfying

P(gX)=®(X) Vxe X, Vgeg.

We shall then look for the most powerful invariant o-test. In some cases, there exists a statistic
T(X), called mazimal invariant, such that every invariant test is a function of T'(X).
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DEFINITION 1.2.1 The statistic T = T(X) is called mazimal invariant with respect to the
group G of transformations, provided T is invariant, i.e.

T(gx)=T(x) VxeX, VYgeg

and

if T(x1) = T'(x2) then there exists g € G such that xo = gx.

The structure of invariant tests is characterized in the following theorem.

THEOREM 1.2.1 Let T(X) be the mazimal invariant with respect to the group of transforma-
tions X. The the test ® is invariant with respect to G if and only if there exists a function h such
that

o(x) =h(T(x)) VxeX.

Proor. (i) If &(x) = h(T'(x)) Vx, then ®(gx) = h(T(gx)) = h(T(x)) = ®(x) Vg € G and hence
® is invariant.

(ii) Let ® be invariant and let T'(x;1) = T'(x2). Then, by the definition, xo = gx; for some f € G
and hence ®(x2) = ®(x1). [ |

Examples of maximal invariants
1. Let x = (x1,...,%,) and let G be the group of translations
gx=(z1 +¢,...,z, +¢), ce RL
Then the maximal invariant is, e.g., T'(x) = (z2 — z1,...,Tn — T1)-

2. Let G be the group of orthonormal transformations IR"™ — IR"™. Then T(x) = Y_1 ; 27 is the
maximal invariant.

3. Let G be the set of n! permutations of z1,...,%,. Then the vector ordered components of
x (vector of order statistics)

T(X) = (xnzl Lap2 <. < z'n:n)
is the maximal invariant with respect to G.

4. Let G be the set of transformations #} = f(z;), i = 1,...,n) such that f : R —» R' is
continuous and strictly increasing function. Consider only the points of the sample space X
with different components. Let R; be the rank of z; among z1,...,%,,i.e. R; = Z?Zl Iz; <
%], 1=1,...,n. Then T(x) = (Ry,...,Ry) is the maximal invariant for G.

Actually, a continuous and increasing function does not change the ranks of the components
of x, i.e. T is invariant to G. On the other hand, let two different vectors x and x’ have
the same vector of ranks Ry,...,R,. Put f(z;) =z}, i = 1,...,n and let f be linear on
the intervals [zn.1, ZTn:2),-- -, [Tnin—1, Tn:n]; define f in the rest of the real line so that it is
strictly increasing. Such f always exists, hence T is the maximal invariant.
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Chapter 2

Properties of ranks and of order
statistics

Let X = (Xi,...,Xy) be the vector of observations; denote X,.; < Xp.0... < Xy, the com-
ponents of X ordered according to increasing magnitude. The vector Xy = (Xpn.1,..., Xn:) i8
called the vector of order statistics and X,,.; is called the 7th order statistic.

Assume that the components of X are different and define the rank of X; as R; = Z;‘Zl IX; <
X;]. Then the vector R of ranks of X takes on the values in the set R of n! permutations (ry,...,m,)
of (1,..., n).

The first property of X () and R is described in the following proposition.

Proposition 1. The pair (X, R) is a sufficient statistic for any family of absolute continuous
probability distributions of X.

Proor. If Xy =x() and R =r are prescribed, then
P(X e AXy=x(),R=r)=P{(Xns1,---, Xnr,) € A|X(y =x(),R=7r} =00rl

depending on whether (zp.r,,. .., Zn:r, ) is an element of A or not; this probability does not depend
on the original distribution of X and this is the property defining the sufficiency. |

DEFINITION 2.0.1 We say that the random vector X satisfies the hypothesis of randomness
Hy, if it has a probability distribution with density of the form

n

p(x) = [] f(@), x € R

i=1

where f is an arbitrary one-dimensional density. Otherwise speaking, X satisfies the hypothesis
of randomness provided its components are independent identically distributed (i.i.d.) random
variables with absolute continuous distribution.

The following theorem gives the general form of the distribution of X and of R.

THEOREM 2.0.1 Let X have the density pp(x1,...,%n)-
(i) Then the vector X () of order statistics has the distribution with the density

_ Tpirys s Tnirg)  Tpil S on < Ty
p(iL‘n:l;...,iEn:n) :{ g:TERp( T v ) Och’l“lwise. i (2.1)
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() The conditional distribution of R given Xy = x() has the form

p(z'n:n’ oo xn:Tn)
bp i _ 2.2
I‘( T| () X()) ﬁ(xnzla ee ,xn:n) ( )

for any r € R and any xp.1 < ... < Tpip-

The distributions of X() and R considerably simplify under the hypothesis Hy : This is described
in the following theorem.

THEOREM 2.0.2 If X satisfies the hypothesis of randomness Hy, then Xy and R are inde-
pendent, the vector of ranks R has the uniform discrete distribution

1
Pr(R=r)= o TE R (2.3)

and the distribution of X(y has the density

_ np(Tna, .- s Tnm) - Tna < ... < T
e ) = . 2.4
P(Zn:1s - Tnin) { 0 ...otherwise. (24)

Finally, the following theorem summarizes some properties of the marginal distributions of
the random vectors R and Xy under Hp.

THEOREM 2.0.3 Let X satisfies the hypothesis Hy. Then
(i) Pr(Ri=j) =i Vi,j=1,...,n.
(ii) Pr(R; = k,Rj = m) = ﬁ for 1 <i,j.k,m<n,i#j, k#m.
(iti) ER; =, i=1,...,n.
(v) var R; = %, i=1,...,n.
(v) cou(R;, Rj) = ="t 1 <i,j <n,1#3j.

(vi) If X has the density p(z1,...,zn) = [lie; f(zi), then Xy has the distribution with the
density

fw@=n( 421 ) F@P 0 -F@I @), se R
where F(z) = [*_ f(y)dy, k=1,...,n.

Remark. In the special case that X is a sample from the uniform R[0,1] distribution, X,,.; has
beta distribution B(k,n — k + 1) with the expectation and variance

k(n—k+1)
(n+1)2(n+2)

k
EX,; = n——i-l’ var Xp =



Chapter 3

Locally most powerful rank tests

We want to test a hypothesis on the distribution of the random vector X, say the hypothesis of
randomness Hj. The rank test depends on X only through the ranks R;,..., R, of the compo-
nents of X and hence could be characterized by test function ®(R). If we test the hypothesis of
randomness Hy against a simple alternative K : {Q} [X has the fixed distribution @], then the
most powerful rank a—test of Hy against K follows directly from the Neyman-Pearson Lemma
and from Theorem 2.1:

1 .nlQR=r)>kq
O(r)=< 0 ..nlQR=r)<k,
v .nlQR=r)=ky reR

where ko and « are determined so that
#{r:nlQR=r7r)>ko)} +7#{r :nlQR=71) =ka} =nlo, 0 < a < 1.

However, many composite alternatives of the practical interest are too rich and the uniformly
most powerful rank tests against such alternatives do not exist. Then we may take excurse to the
local tests and look for a rank test most powerful locally in a neighborhood of the hypothesis.

DEFINITION 3.0.1 Let d(Q) be a measure of distance of alternative Q@ € K from the hypothesis
H. The a—test ®q is called the locally most powerful in the class M of a—tests of H against K
if, given any other ® € M, there exists € > 0 such that

Ba,(Q) > Ba(Q) YQ satisfying 0 < d(Q) < e.

We shall illustrate the structure of the locally most powerful rank tests of Hy against a class
of alternatives covering the shift and regression in the location and scale.

THEOREM 3.0.2 Let A be a class of densities, A = {g(z,0) : 0 € T} such that
(a) J C R! is an open interval, J 3 0.
(b) g(z,0) is absolutely continuous in 6 for almost all x.

(c) For almost all z, there exists the limit

§(2,0) = lim -1g(+,6) — g(z,0)]

and
[o.0) [o.0)

im [ |9(z,6)|de / (2, 0)|de.

0—0 J_~ — 0o

11
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Consider the alternative K = {qa : A > 0}, where

n

aa (T, .. 2n) = Hg(mi, Ag), c¢1,...,¢, given numbers.
i=1

Then the test with the critical region
n
> cian(Risg) > k
i=1

is the locally most powerful rank test of Hy against K with the significance level o = P37, cian(Ri, g) >
k), where P is any distribution satisfying Hy,

an(t,g) = [7 ,t=1,...,n
n( ) g(Xn:ia O)
and Xp.1, ..., Xnn are the order statistics corresponding to the random sample of size n from the

population with the density g(x,0).

Let us apply the theorem to find the locally most powerful rank tests of Hy against some
standard alternatives.

I. We shall start with the alternative of the shift in location and test Hy on the random vector
(X1,...,Xn) against the alternative K; : {ga : A > 0} where

m N
aa(@1,..yan) = [[ f@i) J] flzi—2), (3.1)

i=1 i=m—+1
where f is a fixed absolute continuous density such that
o0
/ (@) |dz < oo. (3.2)
—0co

Then the family of densities A with g(z,0) = f(z — 6) and J = IR! fulfills the conditions (a) -
(c) of Theorem 3.2. Then the locally most powerful rank a—test of Hy against K has the critical
region

N
S an(Ri, f) > k (33)
i=m+1
where k satisfies the condition P(Zi]\im+1 an(R;, f) > k)=a, P € Hy and
. f’(XN:i)] .
an(t, f)=IE|-—7—],1=1,...,N 3.4
wii.f) = |- LL (3.4

and Xy, < ... < Xpn.n are the order statistics corresponding to the sample of size N from the
distribution with the density f. The scores (3.4) may be also written as

where p(u, f) = —’;((5__711((5)))), 0<u<1andUp.,...,Un.n are the order statistics corresponding
to the sample of size N from the uniform R(0,1) distribution. The scores (3.4) could be also

expressed in the form

o) =N (Y20 [T reren - rey i (36)
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Remark. The computation of the scores (3.4) (see also (3.6) is difficult for some densities; if
there are no tables of the scores at disposal, they are often replaced by the approximate scores

The asymptotic critical values coincide for both types of scores.
II. Hy against the alternative of two samples differing by scales. Consider H, against the
alternative Ko : {ga : A > 0} where

m N
~ T —
qa(@r,-.an) =[] fl@i—m) ] e Af( ZeA“), A>0 (3:8)
i=1 i=m+1
where f is an absolutely continuous density satisfying [*_|zf'(x)|dz < oo and p is the nuisance
parameter. Then the family of densities A with g(z,0) = e f((z — p)e™?, J = R, fulfills the
conditions (a) - (c¢) of Theorem 3.2 and the locally most powerful test has the critical region

N

Z aiv(R;, f) > k, (3.9)

i=m+1

where k is determined by the condition P(ZZZ\; ms1 @N(Ri; f) > k) = o, P € Hy and the scores
have the form

S f(Xna) |
G1N(Z,9) =E{-1-Xny = ]E‘PI(UN:ia f)a (310)
F(XN:)
i =1,...,N, where ¢;(u, f) = -1 — F‘l(u)’}’((lf__ill((u“)))), 0 < uw < 1. In this case, too, we could

replace the scores (3.10) by the approximate scores ain (%, f) = ¢1 (ﬁ’ f) ,i=1,...,N.

II1. Tests of Hy against the alternative of simple regression. Consider H( against the alternative
K = {ga : A > 0} where K3 : ga(z1,...,2n) = HZZ\LI f(z; — Ac;) with a fixed absolutely
continuous density f satisfying (3.2) and with given constants ¢y, ..., cn, ZZZ\L L2 > 0. Then the
locally most powerful test has the critical region

N
> cian(Ri, f) > k (3.11)
i=1

with the scores (3.5) and with & determined by the condition P(ZZZ\; Lcon(Ri, f) > k)=
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Chapter 4

Selected two-sample rank tests

Consider two random samples (X1,...,X,,) and (Y1,...,Y,) with the respective distribution
functions F' and G. For the sake of brevity, we shall also denote (Xi,...,Xp,Y1,...,Y,) =
(Z1,...,ZN) with N = m + n. The hypothesis of randomness for the vector (Z1,...,Zy) in this
special case could be reformulated as Hy : F' = G. Consider first testing Hy against the alternative
K, : G(z) < F(z) Yz € R}, G(z) # F(z) at least for one z.

K, is a one-sided alternative stating that the random variable Y is stochastically larger than X.

The problem of testing Hy against K is invariant to the group G of transformations z, =
9(z), i =1,..., N where g is any continuous strictly increasing function. As we have seen before,
the vector of ranks Rq,..., Ry of Z1,..., Zy is the maximal invariant with respect to G. Then,
by Theorem 1.2, the class of invariant tests coincides with that of rank tests.

Hence, we shall restrict our considerations to the rank tests. However, we could still reduce
the class of tests due to the following considerations. Because both (X1,...,X,,) and (Y7,...,Y},)
are random samples, the distribution of the vector of ranks (Ri,...,Rm, Rmt1,---, Rmin) 18
symmetric in the first mn and the last n arguments under all pairs of distributions ¥ and G.
Hence, the sufficient statistic for the vector (Ry,...,Rm, Rmt1,---, Rmin) are two vectors of
ordered ranks

R <...<Rj, and R, <..<Rp,, (4.1)

of random variables Xi,...,X,, and Yi,...,Y,, ordered according to the increasing magnitude.
Because either of the vectors in (4.1) determines the other, the family of invariant tests of Hy
against K7 in turns reduces to the tests dependent only on the ordered ranks of one of the samples,
e.g. on the ordered ranks of Y7,...,Y,,.

N .. ..
Vector R}, 115 R’y could be equal to any of ( n ) combinations. All these combinations are

N
equally probable under Hy and hence the critical region of each rank test of the size o = k/ ( n )

consists of just k& points s1,...,8,, 1 < 81 < ... < 8, < N. The rank test differ in the points
which they include in the critical regions.

The above alternative K7 is still to rich and hence there does not exist the uniformly most
powerful rank test of Hy against K. However, we are able to find rank tests locally most powerful
for Hy against some important subsets of K.

4.1 Two-sample tests of location
Consider the special alternative of K, namely that G differ from F' by a shift in location, i.e.,
Ky: G(z) =F(z—A), A>0.

15
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If we know that F is normal, we use the two-sample t-test. Generally, the test statistic of any
rank test is a function of the ordered ranks of the second sample. Theorem 3.2 and the following
example I. show that the locally most powerful test generally has the critical region of the form

N

hence the test criterion really depends only on the ordered ranks of Y;’s. The scores an(i) =
Ep(U,;) (which could be approximated by an (i) = ¢ (ﬁ)), i=1,..., N, are generated by an

appropriate score function ¢ : (0,1) — IR!. We shall now describe three basic tests of this type
which are the most often used in practice. Every one is locally most powerful for some special F,
but the probabilities of the error of the first kind are the same for all F € Hy.

(i) Wilcoxon / Mann-Whitney test. The Wilcoxon test has the critical region

N
W= Y B>k (4.2)
i=m+1
i.e., the test function
1 W >k,
O(z)=4¢ 0 . W <kq
v W=k,

where k,, is determined so that P, (W > ko) + 7Pr,(W =ko) =, 0 < a <1 (a =0.05, a =
0.01). This test is the locally most powerful against Ko with F' logistic with the density
e—w
=——— zelR.
For small m and n, the critical value k, could be directly determined: For each combination
81 < ... < spof thenumbers 1,..., N we calculate ) ;" | s; and order these values in the increasing

magnitude. The critical region is formed of the My largest sums where My = o ( JZ ); if there

o . . . N
is no integer My satisfying this condition, we find the largest integer My less than o ( n )

and randomize the combination which leads to the (My + 1)—st largest value. However, this
systematic way, though precise, becomes difficult for large N, where we should use the tables of
critical values.

There exist various tables of the Wilcoxon test, organized in various ways. Many tables provide
the critical values of the Mann-Whitney’s statistic

N m
Uv= > > IZ>Z
i=m+1 j=1
we could easily see that Uy and Wy are in one-to-one relation Wy = Uy + @

For an application of the Wilcoxon test, we could alternatively use the dual form of the
Wilcoxon statistic: Let Z1 < ... < Zn.n be the order statistics and define V;,...,Vy in the
following way:

Vi =0 if Zn.; belongs to the 1st sample and V; = 1 if Zy.; belongs to the second sample.
Then Wy = 32N | iV
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For large m and n, where there are no tables, we use the normal approximation of Wy : If
m,n — o0, then, under Hy, Wy has asymptotically normal distribution in the following sense:

Wy — EW
{ N N<$}

lim Pp, = ®(z), z € R, (4.3)

m,n—00 var Wy

where @ is the standard normal distribution function.

To be able to use the normal approximation (4.3), we must know the expectation and variance
of Wy under Hy. The following theorem gives the expectation and the variance of a more general
linear rank statistic, covering the Wilcoxon as well other rank tests.

THEOREM 4.1.1 Let the random vector Ry, ..., Ry have the discrete uniform distribution on
the set R of all permutations of numbers 1,... N, i.e. Pr(R =1r) = %, r € R;letcy,...,cn

and a1 = a(l),...,any = a(N) are arbitrary constants. Then the expectation and variance of the
linear statistic
N
Sn = Z cia(R;) (4.4)
i=1
are
| NN
IESN:NZ@Z% (4.5)
i=1 j=1
. N N
_ =2 )2
var Sy = ﬁ;(cz c) jz_;(a] a)”, (4.6)

~_ 1N = _ 1NN
where €= 5 Y ;L ¢ and a= 5 D, G5

PROOF. Actually,

N
]ESN—ZCZ IEa Zcz Zaja
j:l

i=1

N
var Sy = Z ¢ var a(R;) + Z ZciCjcov(a(Ri), a(R;))

i=1 i#j

var a(R;) Zc + cov(a(Ry), a(R2)) ZZCZC]

i=1 i#j

N
= N22%.cov(a(Ry),a(R2)) + Zcf

i=1
Theorem 2.3 further gives
N
1
var a(Ry) = N iz_;(ai -a)?,
! N
cov(a(R1), a(Ry)) = — gy (e =)’
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hence

N N T N

_ Y 22 _=\2 - _ 2 2

va,rSN——N_1 z:(aZ a) +N—12(az a) Zc]
i=1 i=1 7j=1

[ |
As a special case, we get the parameters of the Wilcoxon statistic under Hy :
N+1 N+1
EWy = % var Wy = % (4.7)

The tables of critical values profit from the fact that the distribution of Wy under Hy is
symmetric around IEWy . If we test the Hy against the left-sided alternative (A < 0, the second
sample shifted to the left with respect the first one), we reject Hy if Wy < 2IEWyx — kq.

A sufficient condition for the symmetry of the linear rank statistic, which cover the Wilcoxon,
follows from the following theorem:

THEOREM 4.1.2 Let (Ry,...,Rn) be a random vector with discrete uniform distribution on
the set R of permutations of 1,...,N. Let ¢1,...,cn and a1 = a(l),...,any = a(N) be constants
such that either

a;+any_jy1 =K =const, i=1,...,N (4.8)

or
¢i+env—iy1 =K =const, ¢=1,...,N. (4.9)

Then the distribution of the statistic Sy = ZZZL cia(R;) is symmetric around IESy, i.e. Sy—ESy
and —(Sy —IESN) have the same distributions.

PROOF. Under (4.8),

2Na = ZZZ\LI a; +Zf\i1 an—i+1 = NK, hence a;+an—_;41 =2a, i =1,...,N. Because (N — R +
1,...,N — Ry +1) and (Ry,...,Ry) have the same distributions,

Sy = ZZZ\LI c;a(N — R; + 1) has the same distribution as Sy and

N
Sy=2a) ¢—Sy=2ESy—-Sy => Sy—ESy=ESy-Sy
i=1

= Pr(Sy — ESy = s) =Pr(Sy —IESy = s) = Pr(IESy — Sy = s)

holds for any s.

Analogously, under (4.9), ¢; + eny—j+1 = 2¢, i = 1,...,N and (Rp,...,R1) has the same dis-
tribution as (Ry,...,Rn). Hence, Sy = ZZZL ev—ir1a(R;) = ZZZ\LI cia(Rn_;+1) has the same
distribution as Sy and

Sy =2t a;— Sy =2ESy — Sy Sy —ESy =ESy — Sy.

The rest of the proof follows the steps of the first part. |

(ii) van der Waerden test. Consider the test criterion (3.3) with the approximate scores (3.7)
corresponding to the score function p(u) = ®~(u), 0 < v < 1, where ® is the standard normal
distribution function. The van der Waerden test is convenient for testing Hy against K; if the
distribution function F' has approximately normal tails. In fact, the test is asymptotically optimal
for Hy against the normal alternatives and its relative asymptotic efficiency (Pitman efficiency)
with respect to the t-test is equal to 1 under normal F and > 1 under all nonnormal F. For
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these good properties the test could be recommended; for large m,n, if we do not have the ta-
bles at disposal, we could use the critical values of the test based on the normal approximation
N(IESy,var Sy) where in the van der Waerden case, by Theorem 4.1,

N . 2
mn 2
ESy = L
9y =0, var Sy N(N—l)izl[ (N+1)]

Moreover, by Theorem 4.2, the distribution of Sy under Hj is symmetric around 0.

. (iii) Median test. The median test is based on the criterion 3.3) with the scores (3.7) generated
by the score function

0 .0<u<j
puy =< & .u=3 (4.10)
1 ..j<u<l

The test statistic has a simple interpretation: Let u be the median of the pooled sample X1,..., X, Y1,...,Y,.
The test statistic is equal to the number of Y —observations situated above u, increased by % for
odd N.

If N is even, M = N/2 then, under Hy, Sy has the hypergeometric probability distribution:

(F )2
k n—=k .
Pr(Si = k|Hp) = ( N ) - max(0,n = M) < k < min(M,n)

n
0 ...otherwise.

Actually, the vector (R;,,,...,Rly) of ordered ranks of Y1,...,Y}, in the pooled sample could be

equal to any of ( JZ ) combinations, each with the same probability. If Sy = &, then &k elements

in the combinations are greater than y and n — k elements are less than y; the number of such

combinations is M M
k n—k

Hence, we could use the critical values from the tables of the hypergeometric distribution. For
large number of observations we use the normal approximation with the parameters

mn

]ESN:n/Q, var SN:m.

The median test is the most convenient for the heavy tailed F with the density f such that
while lim, 1 f(z) = 0, this convergence is much slower than in the case of the normal or logistic
distributions (e.g., for the Cauchy distribution).

4.2 Two-sample rank tests of scale

Let X1,...,Xmym and Y1,...,Y, be two samples with the respective distribution functions F(z — u
and G(y — u), where y is an unknown nuisance shift parameter. We wish to test the hypothesis
of randomness, i.e. Hy : F = G, against the two-sample alternative of scale

Ky G(a:—,u):F(x;'u) VzeR!, o> 1.
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The locally most powerful rank test against K, is given by (3.9) and (3.10). However, instead of
the tests optimal against some special shapes of F with complicated form of the scores, we shall
rather describe tests with simple scores which are really used in the practice. Notice, by (3.10),
that the score function ¢, for the scale alternatives is not more monotone but U —shaped and the

test statistics are of the form
N R
= — . 4.11
sv= > o () (11)

i=m+1

(i) The Siegel-Tukey test. This test is based on reordering the observations, leading to new
ranks, and to the test statistics whose distribution under Hy is the same as that of the Wilcoxon
statistic. Let Zn.1 < Znyo < ... < Zn.ny be the order statistics corresponding to the pooled
sample of N = m + n variables. Reorder this vector in the following way:

ZNA,ZN:N, ZN:N-1,Z4N:2, ZN:3, ZN:N-25 ZN:N—3, ZN:4, ZN:55 - - - (4.12)
and denote R; the new rank of Z; with respect to the order (4.12), i = 1,..., N. The critical
region of the Siegel-Tukey test has the form

N
Sy = Z R; <k,
i=m+1
where k'a is determined so that P, (Sl < kL) + 7P, (Sy = kJ,) = a. The distribution of S},
under Hy coincides with the distribution of the Wilcoxon statistic, hence we could use the tables
of the Wilcoxon test. However, unlike in the case of the Wilcoxon test, the Pitman efficiency of
the Siegel-Tukey test to the F'—test is rather low under normal F, namely z% = 0.608. Anyway,

we should not use the two sample F—test of scale unless we are sure of the normality; namely
this test is very sensitive to the deviations from the normal distribution.

(ii) Quartile test. Put in (4.11)

0 025 <u<0.75
p1(u)=4¢ 0.5 ..u=025 u=0.75
1 LO0<u<025and 0.7 <u <1

and we get the test statistic

N
1 . R; 1 1

i=m+1

and reject Hy for large values of Sx. The value of Sy is, unless N + 1 is divisible by 4, the number
of observations of the Y —sample which belong either to the first or to the fourth quartile of the
pooled sample.

If N is divisible by 4, then Sy has the hypergeometric distribution under Hy, analogously as
the median test.

4.3 Rank tests of Hy against general two-sample alternatives based
on the empirical distribution functions.

Again, X1,...,X,;, and Y1,...,Y, are two samples with the respective distribution functions F
and G. We wish to test the hypotheses of randomness Hy : F = G either against the one-sided
alternative

K : G(z) < F(z)Vz, F#£G
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or against the general alternative
K5 : F 7é G.

This case in not covered by Theorem 3.2; moreover, testing against Kj is invariant to all continuous
functions and there is no reasonable maximal invariant under this setup. In this case we usually
use the tests based on the empirical distribution functions, which are the maximal likelihood
estimators of the theoretical distribution functions in such nonparametric setup. Among these
tests, we shall describe the Kolmogorov -Smirnov tests; another known test of this type is the
Cramér - von Mises test.

The empirical distribution function F, corresponding to the sample X1,..., X, is defined as
1 m

Fo(z) = ~ z;I[Xi < z], £ € RY; (4.14)
1=

analogously is defined the empirical d.f. G,, for the sample Y7, ...,Y,. Denote

~

D, = max[F(z) — Gp(z)] (4.15)
zeR!

Dy = max |Fry(z) — G ().
zeR!

The Kolmogorov-Smirnov test against K5 has the test function ®(X,Y):

1 ..Dpy > C,
(X, Y)={ v ...Dpp=0C,
0 ..Dpn <Gy

The statistic D,,, is the rank statistic, though not linear. To see this, consider the order statistics
Zni1 < ...< Zpy.n of the pooled sample and establish the indicators V7,...,Vy where

V; =0 if Zy.; comes from the X —sample and Zy.; = 1 otherwise.

Because F, and G,, are nondecreasing step functions, the maximum in (4.15) could be attained

only in either of the points Zy.1, ..., ZN.N; moreover

A A m+n|. mn .

Fn(Znj) — Gn(Zny) = —" |:jm+n —Vl—...—Vj] ,9=1,....N
what gives the value of the test criterion

Dy = 2" pax [ vV (4.16)
mn — i .ISjSN mtn 1 gl - .

Notice that this expression depends only on Vi,..., Vy; on the other hand, V; = 1 <= one of
the ranks Ry, 11,..., Ry is equal to ¢, while V; = 0 <= one of the ranks Ry,..., Ry, is equal
to 4. Thus Vi,...,Vy are dependent only on the ranks, and so is also D,,y,. This implies that

the distribution of D,,n under Hj is the same for all F. (4.16) is also used for the calculation
of Dy,,,. Analogous consideration could be made for the one-sided Kolmogorov-Smirnov criterion
Dy, which could be expressed in the form

m-+n
mn

mn

—Vi—...—-V;|.

. max |j
mn  1<j<N

For large values m,n, we could use the limit critical values of the tests, but the asymptotic
distributions of the criteria are not normal. More precisely, it holds

m,n—0o m+n

mn \ /2
lim Py, ( ) D}, <z 3 =1-exp{-22°}, z>0. (4.17)
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4.4 Modification of tests in the presence of ties

If both distribution functions F and G are continuous, then all observations are different with
probability 1 and the ranks are well defined.

However, we round the observations to a finite number of decimal places and thus, in fact, we
express all measurement on a countable network. In such case, the possibility of ties cannot be
ignored and we should consider the possible modifications of rank tests for such situation. Let us
first make several general remarks:

e [f the tied observations belong to the same sample, then their mutual ordering does not affect
the value of the test criterion. Hence, we should mainly consider the ties of observations
from different samples.

e A small number of tied observations could be eventually omitted but this is paid by a loss
of information.

e Some test statistics are well defined even in the presence of ties; the ties may only change
the probabilities of errors of the lst and 2nd kinds. Let us mention the Kolmogorov -
Smirnov test as an example: The definitions of the empirical distribution function (4.14)
and of the test criterion (4.16) make sense even in the presence of ties. However, if we use
the tabulated critical values of the Kolmogorov - Smirnov test in this situation, the size of
the critical region will be less than the prescribed significance level. Actually, we may then
consider our observations X1i,..., Xy, Y1,...,Y, as the data rounded from the continuous
data X7,..., X, Y, ..., Y, . Then the possible values of f?’m(a:) — G’n(a:), z € R! form a
subset of possible values of F* (z) — G%(z), = € R' where F* and G are the empirical
distribution functions of X’s and Y/"’s, respectively; hence

max[Fin () — Gnle)] < max[Fy(2) — G ()]
z€R z€R

and similarly for the maxima of absolute values.

We shall describe two possible modifications of the rank tests in the presence of ties: random-
ization and method of midranks.

Randomization

Let Z1,..., Zn be the pooled sample. Take independent random variables Uy, ..., Uy, uniformly
R(0,1) distributed and independent of Z1, ..., Zy. Order the pairs (Z1,U;),...,(Zn,Un) in the
following way:

either Z; < Z;

or Z; = Z;j and U; < Uj. (4.18)

(24, Us) < (Z5,Uj) <= {
Denote Rj,..., R}, the ranks of the pairs (Z;,U)),...,(Zn,Un). We shall say that Z,,...,Zn
satisfy the hypothesis H if they are independent and identically distributed (not necessarily with
an absolutely continuous distribution). Then, under H, the vector R,..., R} is uniformly dis-
tributed over the set R of permutations of 1,..., N. We shall demonstrate it on an important
special case when Z, ..., Zx could take on the equidistant values, e.g. when the data are rounded

on k decimal places.
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THEOREM 4.4.1 Let Zi,...,Zy be random variables satisfying the hypothesis H which take
on the values from the set

a+kd; k=0,+£1,42,..., a e R, d>0.

Then the vector R* = (RY, ..., R};) has the probability distribution

1
P]’.‘(R*:'r‘):ﬁ reR.

PROOF. We may assume, without loss of generality, that Zi,..., Zn take on the integer values.
Then the random variable T; = Z; 4+ Uj; is equivalent to the pair (Z;, U;), because Z; = [T;] and
U; = T; — [T;] with probability 1, 4 = 1,..., N. Because Pr(T; = t) = 0 Vt € R}, the distribution
function of T; is continuous. Moreover,

(Z;,Us) < (Z;,U;) <= T, < Ty,

hence Rj,..., R} are the ranks of the continuous random variables T7,...,Ty satisfying the
hypothesis of randomness Hj; this implies their distribution. |

Method of midranks

The idea behind this method is that the equal observations should have equal ranks; the joint
value of their rank is then taken as an average of all ranks of the group. We shall mainly describe
this method on the Wilcoxon test, but it is applicable also to other tests.

Assume that there are e different values among N observations; among them, d; observations
equal to the smallest value, dy observations equal to the second smallest value, etc., d, observations
equal to the largest value, ) ;_, d; = N. The average ranks of the individual groups are

V] =...=Uvq, = %(d1+1)
Vdy+1 = --- = Vdy+d, = d1 + %(d2 +1)

Vdy+dg+1 = - -+ = Vdi+dyg+dg = d1 +d2 + %(d3 +1) (4.19)
Vdy+dptohdes+1 = ---=d1+do+ ...+ de1 + %(de +1).

Let RY,..., R/ denote the midranks of the observations Z,...,Zy. We have the modified
Wailcoxon statistic

N
Wi => R (4.20)
i=1
Because the distribution of (R}, ..., R) under H is not more uniform on R, (and the values may

not be integer), we cannot use the standard tables of Wilcoxon critical values. If the numbers of
equal observations are small comparing with N then we could use the normal approximation for
sufficiently large m, n. To use this approximation, we must know the expectation and the variance
of W§; under H. These characteristics are conditional given the values di,...,d, and hence the
whole test is conditional. We have

N+1

IE)(W;\‘,|d1,...,de):n 2

= EWy (4.21)
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and hence the expected value of the midrank statistic coincides with
statistic. Actually,

N
EWR|dy,...,de) = Y E(Rj|dy,...,de)
i=m+1
Moo 1
=2 N[d1§(d1+1)+d2(d1+§(d2+1))+...+de(d1+
i=m—+1

N
1 N+1
:NE (I+...+N)=n 5
1

i=m+

The variance of Wy is equal

mn(N +1) mn Yoo (d¥—dy)
12 12N(N — 1)

* J—
var W, =
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that of ordinary Wilcoxon

1
ceetde1+ Ede)

(4.22)

The first term in (4.22) is the variance of the standard Wilcoxon statistic, while the second term
is a correction for the ties which vanishes if there are no ties among the observations.



Chapter 5

Tests for comparison of the
treatments based on paired
observations

When we want to compare the new treatment with the standard one, we wish to exclude the
effects due to the inhomogeneity of the data. One possibility how to do that is to divide the
experimental units in n pairs, as much homogeneous as possible, and apply the new treatment
to one unit of the pair while the other unit serves for the control. We could also apply both
treatments successively to the same unit.

Let Y1,...,Yn be the measurements of the effects of the new treatment and Xi,..., Xy be
the control measurements. Then (X1,Y3),...,(Xn,Yn) could be considered as a random sample
from a bivariate distribution with the distribution function F(z,y); it is generally unknown and
we only assume that it is continuous.

The hypothesis H; of no effect of the new treatment is equivalent to the statement that the
distribution function F(z,y) is symmetric around the straight line y = z, i.e.

H,: F(z,y) = F(y,z) Vz,y € RL (5.1)

The alternative of the positive effect of the new treatment generally means that the distribution
of the random vector (X,Y) is shifted toward the positive halfplane y > z. In this section we
shall consider the rank tests of H, against various alternatives.

5.1 Rank tests of H;
Apply the folowing transformation to (X;,Y;), i=1,...,n:
Zi=Y-X;, W, =X;+Y;,, i1=1,....n (5.2)

Under Hy, the distribution of the vector (Z1, W1),...,(Zn, Wy) is symmetric around the w—axis,
while under the alternative it is shifted in the direction of the positive half-axis z. The problem of

testing H; against such alternative is invariant with respect to the transformations z; = z;, wj =

g(w;), i =1,...,n, where g is a 1 : 1 function with finite number of discontinuities. The vector
(Z1,...,Zn) is the maximal invariant with respect to such transformations, hence the invariant
tests will be only the functions of (Z,...,Zy), which forms a random sample from some one-

dimensional distribution with a continuous distribution function D. The problem of testing H; is
then equivalent to
H{: D(z)+D(-2)=1 zeR! (5.3)

25
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stating that the distribution D is symmetric around 0, against the alternative
Ki: D(z+A)+D(-z+A)=1VzeR' A>0 (5.4)

what means that the distribution is shifted in the direction of the positive z.
The distribution D is uniquely determined by the triple (p, F1, F») withp = Pr(Z < 0), Fi(z) =
Pr(|Z| < 2|Z < 0) and Fy(z) = Pr(Z < z|Z > 0). Equivalent expressions for H{ and K| are

H{IZ p:1/2, Fy = I, p< 1/2, Fy < Fy.

This problem is invariant with respect to the group of transformations G : z, = g(z;), i1 =1,...,n,
where g is continuous, odd and increasing function. We could easily see that the maximal invariant
with respect to G is (Si,...,Sm, R1,-..,Ryp), where Si,..., Sy, are the ranks of the absolute
values of negative Z’s among |Zi|,...,|Zn| and Ry,...,n are the ranks of positive Z’s among
|Z1|,...,|Zn]|. Moreover, the vectors S| < ... < S;, and R} < ... < R;, of ordered ranks are
sufficient for (Si,...,Sm,R1,-..,Ry) and, further, one of them uniguely determines the other;
hence it is finally consider only, e.g., R{ < ... < R}, and the invariant tests of H; [or of Hj]
depends only on R} < ... < R},.

Let v be the number of positive components of (Z1,...,Zy). Then v is a binomial random
variable B(N,w); # = 1/2 under H; and, for any fixed n,

Py (Rl =r1,...,R, =r,,v=n)= (5.5)
1 N Y\
Pin (B =i By =mly =n)Pi (v =m) = T( n ) (2) N (2)
n
. N N

for any n—tuple (rq,...,ry), 1 <7 <... <1y < N.The number of such tuplesis ) ,/_, ( n ) =
(%)N The critical region of any rank test of the size @ = 2%\, contains just £ such points
(Tl,...,Tn).

However, among such critical regions, there generally does not exist the uniformly most pow-
erful one for H{ against K{. We usually consider H{ against the alternative of shift in location
under which (Z1, ..., Zy) has the density gr,A > 0:

N
aalz,...,zn) = [[ flzi—A) : A>0 (5.6)

i=1

where f is a one-dimensional symmetric density, f(—z) = f(z), € R'. A = 0 under H; [or
HY'] The locally most powerful rank test of H; against (5.6) has the critical region

N

> al(RY, fsign Zi > kq (5.7)
i=1
where R is the rank of |Z;| among |Z1],...,|Zn| and the scores af, (i, f) have the form

u+1
2

an(i, f) =Ep* (U, ), i=1,-...N  ¢"(u, f) = ¢( f), 0<u<l.  (5.8)

and where @(u, f) = —’;((5__711((5)))), 0 < u < 1. We shall describe two main tests of this type: the
one sample Wilcoxon test and the sign test.
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5.2 One-sample Wilcoxon test

The one-sample Wilcoxon test is based on the criterion

n
Wi = sign Z.R} (5.9)
i=1
where R; is the rank of |Z;| among |Zi|,...,|Zn|, or in the equivalent form
v
Wit => "R (5.10)
i=1
where R; is the rank of Z; > 0 among |Zi|,...,|Zn|, v is the number of positive components.

Obviously Wy = 2WiT — s N(N +1).
We reject H if W;,’ > Cl, 1.e.if the test criterion exceeds the critical value. For large N, when
the tables of critical values are not available, we may use the normal approximation:

Wy —EWY
PHI{Niﬂgx}—)oo as N — oo (6.11)
var Wy
where 1
EWy =0, var Wy = EN(N +1)(2N +1) (5.12)

The parameters (5.12) follow from the following proposition:

Proposition 5.2.1 Let Z be a random variable with continuous distribution function symmetric
around 0, i.e. F(z)+ F(—z) =1, z € R!. Then Z and sign Z are independent.

PrOOF. Obviously P(sign Z = 1) = P(sign Z = —1) = 1/2. Then P(sign Z = 1,|Z| < 2) =
P(0<Z<2z)=P(-2<Z<0)=P(sign Z=-1,|Z| < z) = § P(|Z| < 2). B Similarly
as the two-sample Wilcoxon test, the one-sample Wilcoxon test is convenient for the densities of
logistic type.

5.3 Sign test

Consider a more general situation that Zy,...,Zx are independent random variables, Z; dis-
tributed according to the distribution function D;, and not necessarily all Dy,..., Dy are equal.
This situation occurs when we compare two treatments under different experimental conditions
or using different methods.

Under this situation we want to verify the hypothesis

H}: Di(z) +Di(-2)=1, zeRY i=1,...,N (5.13)

of symmetry of all distributions around 0, against the alternative that all distributions are shifted
toward the positive values.

Such problem is invariant with respect to all transformations of the type z, = fi(z;), ¢ =
1,..., N, where f;’s are continuous, increasing and odd functions. The maximal invariant with
respect to such transformations is the number n of positive components. The uniformly most
powerful invariant test (most powerful among the tests dependent only on n) has the form

1 .n>C,

®(n)=< v ..n=0C, (5.14)
0 ..n<Cy,
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where C,, and < are determined by the equation

N)(l)N ( . )(l)N
> ) o+ ) =a (5.15)
e ( n 2 Ca 2

The criterion of the sign test is simply the number of positive components among Zi,...,Zn
and its distribution under H; is binomial (N, 1/2). For large N we could again use the normal
approximation.

If all distribution functions Dy,..., Dy coincide, the sign test is the locally most powerful
rank test of Hy for D of the double-exponential type with the density d(z) = %e"z_N, z e RN
When we want to use the rank test, we need not to know the exact values X;,Y;, i =1,..., N;

it is sufficient to know the signs of the differences Y; — X;. This is a very convenient property of
the sign test: we could use this test even for the qualitative observations of the type: ”drogue A
gives a better pain relief than drogue B”. As a matter of fact, we do not have any better test
under such conditions.



Chapter 6

Tests of independence in bivariate
population

Let (X1,Y1),...,(Xy,Yy) be a random sample from a bivariate distribution with a continuous
distribution function F(z,y). We want to test the hypothesis of independence

Hy: F(x,y) = Fi(z)F>(y) (6.1)

where F; and Fs are arbitrary distribution functions. The most natural alternative for Hy is
the positive [or negative] dependence, but it is too wide and we could hardly expect to find a
uniformly most powerful test against such alternative. Instead of it we consider the alternative

X; = XZO + AZ; .
Y= Y0+ AZ A>0,i=1,...,n, (6.2)
where X?, Y, Z;, i =1,...,n are independent and their distributions are independent of ¢. The

independence then means that A = 0.

Let Ry,..., R, be the ranks of Xi,..., X, and let S1,...,5, be the ranks of Y;,...,Y,,
respectively. Under the hypothesis of independence, the vectors (Ry, ..., R,) and (Si,...,S,) are
independent and both have the uniform distribution on the set R of permutations of 1,...,n.

The locally most rank powerful test of Ho against the alternative Ko in which X has the
density fi and Y the density f, respectively, both densities continuously differentiable, has the
critical region

n
Zan(Riafl)an(Rian) > Ca (63)
i=1
with the scores ay (4, f) given in (3.4), which are usually replaced be approximate scores (3.7).
We shall briefly describe two the most well-known rank tests of independence.

6.1 Spearman test
The Spearman test is based on the correlation coefficient of (Ry,...,Ry) and (Si,...,Sp):

rg = n izt RiSi— RS (6.4)
[5 20 (Bs — R)?5 300, (S — 5)2]4/2

where 41
R:S:"Q,

29
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1< . 1 o 1~y [(n+1)? n?-1
EZ(Ri—R) _HZ(Si—S) _EZZ —( > ) =15 (6.5)
i=1 i=1 i=1
Then we could express (6.4) in the simpler form
12 = 3(n+1)

The Spearman test rejects Hy if rg > Cy, or, equivalently, if S = Y"1 | R;S; > Cj. In some tables
we find the critical values for the statistic

n

S'=Y (R - Si)” (6.7)

i=1
for which rg =1 — ﬁé”. The test based on &' rejects Hy if S’ < CL,.
For large n we use the normal approximation with

n?(n+1)%(n — 1)
144

2
IES:W, var § =

The Spearman test is the locally most powerful against the alternatives of the logistic type.

6.2 Quadrant test

This test is based on the criterion

Q= j;Z[sign(Ri - ”%1) + 1][sign(S; — ”T“) +1] (6.8)

i=1

and rejects Hy for large values of Q. For even n is ) equal to the number of pairs (X;,Y;), for
which X; lies above the X —median and Y; lies above the Y —median. Statistic () then has, under
the hypothesis Ho, the hypergeometric distribution

() () ”

forg=0,1,...,m, m =n/2. For large n we use the normal approximation with the parameters

2

EQ =n/4, vaerlGn

T (6.10)



Chapter 7

Rank test for comparison of several
treatments

7.1 Omne-way classification

We want to compare the effects of p treatments; the experiment is organized in such a way that the
i-th treatment is applied on n; subjects with the results z;1,...,Zin;, 1 =1,...,p, Y0 n; =n.
Then z;1,...,Zi, is a random sample from a distribution with a distribution function F;, ¢ =
1,...,p. The hypothesis of no difference between the treatments could be then expressed as the
hypothesis of equality of p distribution functions, namely

HQZ FIEFQE...EFP (71)
and we could consider this hypothesis either against the general alternative
Ky: Fi(z) # Fy(a) (7.2)

at least for one pair ¢, j at least for some z = xy,
or against a more special alternative

K): Fi(z)=F(z—A;), i=1,...,p (7.3)

and A; # A; at least for one pair i, j.

The alternative (7.3) claims that the effects of treatments on the values of observations are-
linear and that at least two treatments differ in their effects.

The classical test for this situation is the F-test of the variance analysis; this test works well
if we could assume that F; ~ N (u + a;,02), i = 1,...,p. We obtain the usual model of variance
analysis

Xij=p+toi+tej 3=1,...,n5;¢=1,...,p (7.4)

where e;; are independent random variables with the normal distribution N'(0, o). The hypothesis
H5 could be then reformulated as

H'2: ar=az=...=q,=0.
The F-test rejects the hypothesis HY, provided

n—p P ni(X;—X.)?
F= =1V )_>¢ (7.5)
p—137, Z?Q(Xij - X;.)? ¢
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where

~ 1 g _ 1 P ny
X;. = -~ ZXZ']' and X.. = n ZZXU,
i

j=1 i=1 j=1

i =1,...,pand where the critical value C, is found in the tables of F-distribution with (p—1,n—p)
degrees of freedom.

7.2 Kruskal-Wallis rank test

Let us order all observations

1‘11,...,Z‘lnl,Z‘Ql,...,Z‘an,...,z‘pl,...,z‘pnp

according to the increasing magnitude. Let R;q, ..., R;,; be the ranks of the observations z;1, . .., Zin,-
Let R} <... < Ry, be the same observations ordered in increasing magnitude. Then, under the
hypothesis Ho,

nil...n,!

Pety (Biy =11ty Riy = Ty, By = 0, B, = Tmy ) = 0% (7.6)
for any permutation (r11,...,71n,...,7pl,...,pr,) of numbers 1,... n such that r;; <... < rip,
foralli=1,...,p.

Denote
1 &
Ri.:—. R, i=1,...,p
ni =
1 G n+1
R.=>3 > Rij=——. (7.7)
i=1 j=1
If we replace X;. and X.. in (7.5) by R;. and R.., respectively, i = 1,...,p, we obtain
n—p P ni(R.—R.)?
p—130 Y (Rij — Ri.)?
and this is proportional to the criterion of the Kruskal- Wallis test,
« 12 z”: (R n+1))2 (7.8)
= — ) m| Ry — .
n(n+1) = A 2
12 &
= —2 SR -3(n+1).
n(n+1)i§;nZ i ~3(n+1)

In the special case p = 2, the Kruskal-Wallis reduces to the two-sided (two-sample) Wilcoxon test.
We reject the hypothesis Ho, provided X > C, where the critical value C, is either obtained
from special tables, or, if p > 3 and n; > 5, i = 1,...,p, we use the asymptotic critical values:

It could be shown that, under Hy and for large n1,...,ny, the criterion K has asymptotically X2
distribution with p — 1 degrees of freedom.

Remark. In case of ties between the observations we replace the ranks by the midranks, similarly
as in the case of the Wilcoxon test.
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7.3 Two-way classification (random blocks)

We want to compare p treatments, but simultaneously we want to reduce the influence of non-
homoheneity of the sample units. Then we could organize the experiment in such a way that
we divide the subjects in n homogeneous groups, so called blocks, and compare the effects of
treatments within each block separately. The subjects in the block are usually assigned the
treatments in a random way.

Let us consider the simplest of these models with n blocks, each containing p elements, and
each treatment is applied just once in each block. We assume that the blocks are independent of
each other.

The observations could be formally described by the following table:

Treatment 1 2 3 ... p
Block
1 I11 I12 I13 ... T1p
2 o1 o9 Io3 ... T2p
n Tnl Zn2 Zn3 ‘e Tnp

The observation z;; is the measured effect of the j-th treatment applied in the 4-th block.

We assume that X;; are independent random variables and X;; has a continuous distribution
function Fj;, j =1,...,n; ¢ =1,...,p. We wish to verify the hypothesis that there is no significant
difference among the treaments, hence

H3:F’i1EEQE...EEPV’ZZI,...,TL (79)
against the alternative
K : Fij # Fiy (7.10)

at least for one ¢ and at least for one pair j, k,
or against a more special alternative

Ki: Fj(z)=F(z—Aj), j=1,...,n;i=1,...,p (7.11)
A; # Ay at least for one pair j, k. (7.12)

The classical test of Hj is the F-test, corresponding to the model
Xij:,u-i-ai-i-,@j-i-Eij,jZl,...,’n;iZl,...,p, (7.13)
where E;; are independent random variables with the normal distribution N(0,0?), w is the
main additive effect, o; is the effect if the ¢-th block and (; is the effect of the j-th treatment,
j=1,...,n; it =1,...,p. The hypothesis H3 then reduces to the form
Br=0=...=Bp.
The critical region of the F-test of Hs has the form

_&-h 521()27? — X (Xij = Xi) = Xy + X.)* > Ca (7.14)
=1 Qi

where C,, is the critical value of F-distribution with p — 1 and (p — 1)(n — 1) degrees of freedom.




34

Friedman rank test

JANA JURECKOVA

Order the observations within each block and denote the corresponding ranks R;1,..., Riyp; 4 =
1,...,n. The ranks we arrange in the following table:
Treatment 1 2 3 p Row
Block average
1 Ry Rio Ry3 Rlp %
2 Ry, R Ros Ryp e
n Ry Ry Ry Rnp I%l
Column R4 R R IR., | Overall average
average R. = ’%1

where R; = L3 | R;; and R..

The Friedman test is based on the following criterion:

@n

Zz 1 Z] 1 Ry

while the large value of the criterion are significant.

(7.15)

As n — oo, then the distribution of @, is approximately x? with p — 1 degrees of freedom.

In case p = 2, the Friedman test is reduced to the two-sided sign test.

The Friedman test is applicable for the comparison of p treatments even in the situation that
we observe only the ranks rather than exact values of the treatment effects.
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