

Central European Institute of Technology BRNO | CZECH REPUBLIC

Analytical ultracentrifugation Biomolecular interactions

ANA

Jan Komárek

Interacting systems on AUC

SELF-ASSOCIATION (oligomerization)

e.g.
$$A + A \rightleftharpoons A_2$$

HETERO-ASSOCIATION

e.g.
$$A + B \rightleftharpoons AB$$

What can be determined?

- stoichiometry (reaction scheme)
- affinity K_d
- shape of the complex

- two or more identical molecules

- two or more different proteins
- protein-DNA
- protein-polysaccharide
- protein small molecule

S2004 Methods to study biomolecular interactions - classical versus modern

Мо	dels in SEDPH	AT
$A + A + A \rightleftharpoons A_3$	$nA \rightleftharpoons A_n$	$A + B + B + C \rightleftharpoons \dots$ $A \rightleftharpoons A \rightleftharpoons A_{0}$
$A + B \neq ABB$ 2 non-symetrical sites $A \neq A$ $A \neq A$ $A \neq A$	$\overrightarrow{A_2} \xrightarrow{A+B}_{comp}$ $\overrightarrow{A_2} \overrightarrow{A_4}$ \overrightarrow{A}	B + C \rightleftharpoons eting B and C for A (A+A) + B + B \rightleftharpoons self-associating A with two sites for B
$A + B + C \rightleftharpoons ABC$		
$A + B + B + C + C \neq$ $S^{2}A + B + B + B \rightleftharpoons ABBB$	≓ (A+A) + (heterodime	$A + B + B \rightleftharpoons ABB$ B+B) $\rightleftharpoons \dots$ r of homodimers
CEITEC	S2004 Methods to study	biomolecular interactions – classical versus modern

Affinity range of biomolecular interactions studied by AUC

S2004 Methods to study biomolecular interactions - classical versus modern

Dissociation constant (K_d)

- equilibrium constant that measures the propensity of a larger object to dissociate reversibly to smaller components
- commonly used to describe the affinity between the molecules (lower K_d ~ higher affinity)
- inverse of association consant (1/K_a)

$\mathbf{K}_{d} = \frac{[\mathbf{A}]^{\mathsf{x}} \cdot [\mathbf{B}]^{\mathsf{y}}}{[\mathbf{A}_{\mathsf{x}} \mathbf{B}_{\mathsf{y}}]}$ $A_x B_y \rightleftharpoons xA + yB$ frequently x = y = 1: $AB \rightleftharpoons A + B$ [A]·[B] [AB] S2004 Methods to study biomolecular interactions - classical versus modern

For a 2-component system, K_d has concentration units (M)

Effect of concentration on species' populations

Self-association

A + A	$\overline{\leftarrow}$	ŻA2
$K_d =$: 1	uM

Hetero-association

 $A + B \rightleftharpoons AB$ $K_d = 1 \text{ uM}$

total conc. of A	% of A as a monome	% of A as r a dimer	total conc. of A	total conc. of B	% of A in a free forr	% of A in n a comple	n % of B in ex a free form	% of B in a complex
0.1 uM	85	15	3 uM	0.1 uM	98	2	26	74
0.3 uM	70	30	3 uM	0.3 uM	92	8	26	74
1 uM	50	50	3 uM	1 uM	77	23	30	70
3 uM	33	67	3 uM	3 uM	43	57	43	57
10 uM	20	80	3 uM	10 uM	12	88	74	26

Populations changing in the concentration-dependent manner...

Below K_d, equilibrium shifted towards smaller oligomer (self-assoc.) /free species (hetero-assoc.) Above K_d, equilibrium shifted towards higher oligomer (self-assoc.) /complex (hetero-assoc.)

\$CEITEC

Determination of K_d

Self-association

% of A as

a monomer

85

70

50

33

20

total conc. of A

0.1 uM

0.3 uM

1 uM

3 uM

10 uM

10x

10x

% of A as

a dimer

15

30

50

67

80

Hetero-association

 $A + B \rightleftharpoons AB$ $K_d = 1 uM$

total conc. of A	total conc. of B	% of A in a free form	% of A in a complex	% of B in a free form	% of B in a complex
3 uM	0.1 uM	98	2	26	74
3 uM	0.3 uM	92	8	26	74
3 uM	1 uM	77	23	30	70
3 uM	3 uM	43	57	43	57
3 uM	10 uM	12	88	74	26

 \rightarrow Dilution series

→ Titration series (A with B and/or B with A) Dilution series of a purified complex

Using a broad concentration range (one order above and below K_d) for accurate K_d determination!

Question: Any idea on K_d of BSA?

raw SV data:

c(s) distribution of 16 uM BSA:

Question: Any idea on K_d of BSA?

raw SV data:

c(s) distribution of 16 uM BSA:

STEP 1: Performing SV experiment at different loading concentration/ molar ratios + comparing c(s) distributions

Is there a reversible interaction?

- emerging of new peaks in c(s) distribution?
- shifts in peak position with protein concentration?
- changes in peak areas with protein concentration?

STEP 1: Performing SV experiment at different loading concentration/ molar ratios + comparing c(s) distributions

Fast or slow interaction?

SLOW INTERACTIONS

elf-association (monomer-dimer) S

Sedimenting species stable, peak positions constant, relative peak areas change with increasing concentration

FAST INTERACTIONS

 $(k_d > 10^{-3} s^{-1})$

 $2 \ A \rightleftharpoons A_2$ Rapid interconversion between complex and free species, peak position change with increasing concentration

S2004 Methods to study biomolecular interactions - classical versus modern

STEP 1: Performing SV experiment at different loading concentration/ molar ratios + comparing c(s) distributions

Fast kinetics system:

Sedimentation of A, B and complex AB

STEP 1: Performing SV experiment at different loading concentration/ molar ratios + comparing c(s) distributions

Fast or slow interaction?

SLOW INTERACTIONS

AB 1 Ω ÷ 4 Hetero-association

Sedimenting species stable, peak positions constant, relative peak areas change with increasing concentration

FAST INTERACTIONS

(k_d > 10⁻³ s⁻¹) A + B ↓ AB

Rapid interconversion between complex and free species, peak position change with increasing concentration

S2004 Methods to study biomolecular interactions - classical versus modern

STEP 2: Analyzing the interaction, determination of K_d

SEDIMENTATION VELOCITY

- direct fitting of sedimentation boundaries
- analysis with binding isotherms
- multi-signal SV (MSSV technique) hetero-associations only

SEDIMENTATION EQUILIBRIUM

32004 Methods for

Direct fitting approach

Lamm equation for interacting system (1:1 hetero-association):

$$\frac{\partial c_i}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left[\frac{i D_i}{\partial r} \frac{\partial c_i}{\partial r} - \frac{s_i}{s_i} \omega^2 r^2 c_i \right] + \sigma_i q, \quad i = 1, 2, 3$$
$$q = \frac{k_{\text{off}}}{K_{\text{d}}} c_1 c_2 - k_{\text{off}} c_3 \quad \text{and} \quad \sigma_1 = \sigma_2 = -\sigma_3 = -1$$

q – chemical flux, 1 and 2 are free species, 3 is a complex

- necessary to globally fit the data obtained at different concentrations/molar ratios
- · difficult to apply in practice
- high requirements on sample purity

Analysis with binding isotherms

ISOTHERM – "dependence of a physical property of a mixture of interacting components on the loading concentrations (keeping all other parameters constant, including temperature)"

Some macroscopis observations of a mixture are dependent on the relative concentration of free and complex species, and a set of measurements in a concentration series generate an isotherm that can be analyzed to determine reaction scheme and K_d

 s_w – weight-averaged s-value of the whole system as a function of loading concentration of sample (integration of distribution over all species participating in interaction)

s_{w,fast} – weight-averaged s-value of the reaction boundary as a function of loading concentration (fast kinetics only)

pop – concentration-dependent shift of peak areas (populations)

Analysis with binding isotherms:

most frequently used approach, more tolerant to impurities

information extracted from the c(s) distributions

Analysis with binding isotherms

Example of analysis – $A + B \rightleftharpoons AB$ with slow kinetics

Different concentrations of proteins – dilution serie, A and B in equimolar concentrations

fitting of data to $A+B \rightleftharpoons AB$ model for binding isotherms

s_w isotherm

Analysis with binding isotherms

Example of analysis – $A + B \rightleftharpoons AB$ with fast kinetics

Different concentrations of proteins – dilution serie, A and B in equimolar concentrations

sw and sw,fast isotherm

Real example – K_d determination of BIC - Masanyk University His kinase

Oligomerization of histidine kinase:

Sedimentation velocity AUC:

20° C, 48000 rpm, ABS detection (230 nm or 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

SV experiment performed at different loading concentrations of protein.

The distributions do not overlay, there is a shift to higher s with increasing concentration.

Oligomerization of histidine kinase:

Sedimentation velocity AUC:

20° C, 48000 rpm, ABS detection (230 nm or 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

SV experiment performed at different loading concentrations of protein.

The distributions do not overlay, there is a shift to higher s with increasing concentration.

Oligomerization of histidine kinase:

Sedimentation velocity AUC:

20° C, 48000 rpm, ABS detection (230 nm or 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

SV experiment performed at different loading concentrations of protein.

The distributions do not overlay, there is a shift to higher s with increasing concentration.

Oligomerization of histidine kinase:

Sedimentation velocity AUC:

20° C, 48000 rpm, ABS detection (230 nm or 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

SV experiment performed at different loading concentrations of protein.

The distributions do not overlay, there is a shift to higher s with increasing concentration.

Oligomerization of histidine kinase:

Sedimentation velocity AUC:

20° C, 48000 rpm, ABS detection (230 nm or 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

SV experiment performed at different loading concentrations of protein.

The distributions do not overlay, there is a shift to higher s with increasing concentration.

Oligomerization of histidine kinase:

Sedimentation velocity AUC:

20° C, 48000 rpm, ABS detection (230 nm or 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

SV experiment performed at different loading concentrations of protein.

The distributions do not overlay, there is a shift to higher s with increasing concentration.

Oligomerization of histidine kinase:

Sedimentation velocity AUC:

20° C, 48000 rpm, ABS detection (230 nm or 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

SV experiment performed at different loading concentrations of protein.

The distributions do not overlay, there is a shift to higher s with increasing concentration.

= sign of reversible interactions

REVERSIBLE DIMER-TETRAMER EQUILIBRIUM

Oligomerization of histidine kinase:

Sedimentation velocity AUC:

20° C, 48000 rpm, ABS detection (230 nm or 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

Oligomerization of histidine kinase:

Sedimentation velocity AUC:

20° C, 48000 rpm, ABS detection (230 nm or 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

Oligomerization of histidine kinase:

Sedimentation velocity AUC:

20° C, 48000 rpm, ABS detection (230 nm or 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

Oligomerization of histidine kinase:

Sedimentation velocity AUC:

20° C, 48000 rpm, ABS detection (230 nm or 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

Oligomerization of histidine kinase:

Sedimentation velocity AUC:

20° C, 48000 rpm, ABS detection (230 nm or 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

Oligomerization of histidine kinase:

Sedimentation velocity AUC:

20° C, 48000 rpm, ABS detection (230 nm or 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

Oligomerization of histidine kinase:

Sedimentation velocity AUC:

20° C, 48000 rpm, ABS detection (230 nm or 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

s_w isotherm analysis:

S_{20.w}

Multi-signal sedimentation velocity (MSSV)

- determination of complex stoichiometry in heterogeneous interactions of species with significantly different spectral properties ($\epsilon_{280}/ \epsilon_{250}, \epsilon_{280}/\epsilon_{IF}$)
- acquisition of multiple signals (wavelengths) necessary
- useful even for impure samples, multi-step associations, or in cases the correct reaction model is unknown

2004 Methods for a

MSSV analysis of triple protein mixture of viral glycoprotein, its cognate receptor and antigenrecognition receptor fragment, $c_k(s)$ of mixture shown as solid lines, $c_k(s)$ of each protein alone dotted (*Brown, 2008*)

Sedimentation equilibrium

- sedimentation + diffusion + physical association all in equilibrium
- high sample purity crucial
- global fitting of data obtained for different loading concentration/molar ratios needed for accurate K_d determination

diffusion sedimentation absorbance [AU] 1.2 1.0 0.8 0,6 0.4 -A+A 0.2 chemical 0.0 A+A equilibrium -0.2 6.5 6.4 6.6 radial distance [cm]

Collected SE data are fitted with the appropriate model to obtain K_d

$$2A \rightleftharpoons A_{2} \qquad c_{tot}(r) = c_{1}(r_{0}) \exp\left[M_{1}^{*} \frac{\omega^{2}(r^{2} - r_{0}^{2})}{2RT}\right] + K_{12}r_{1}^{2}(r_{0}) \exp\left[2M_{1}^{*} \frac{\omega^{2}(r^{2} - r_{0}^{2})}{2RT}\right] \qquad \left[2M_{1}^{*} \frac{\omega^{2}(r^{2} - r_$$

Sedimentation equilibrium

Example of stoichiometry + K_d determination

20° C, 10500 rpm, 17500 rpm, 30000 rpm, ABS detection (230 nm and 280 nm) 20 mM Tris/HCI, 100 mM NaCI, pH 7.4

Concentrations used: 0.06 mg/ml 0.12 mg/ml 0.24 mg/ml 0.35 mg/ml 0.71 mg/ml 1.30 mg/ml

model fitting the data well

 $K_{d} = 35.3 \text{ uM}$

global analysis of SE data collected at three rotor speeds, 6 different protein concentrations (detection at 280 and 230 nm)

Thank you for your attention

Contact:

Jan Komárek

Biomolecular Interactions and Crystallization CF CEITEC

jan.komarek@ceitec.cz

S 2004 Methods for

S2004 Methods to study biomolecular interactions - classical versus modern