Importance of sample preparation

S2004 Methods for characterization of biomolecular interactions – classical versus modern

> Mgr. Josef Houser, Ph.D. houser@mail.muni.cz

Real data – not always that ideal

Э

Reproducibility crisis

• Based on 2016 poll with > 1500 scientists included:

70 % were not able to repeat an experiment !50 % were not able to repeat at least one of their own experiments !!!

- Possible causes:
 - Selective choice of data (cherry picking)
 - Unsuitable experimental desing
 - Inappropriate data evalueation (statistics)

It's probable that partial problem is insufficient characterization of input material and procedures.

Source: nature.com

Ideal sample properties

Defined (chemically, biologically, conformationally)

- Pure (contamination by small molecules, macromolecules)
- Homogeneous (micro-/macro- heterogeneity)
- Stable (storage, time-demanding analysis)

Sample identity

Signal peptide

- Exact composition of sample (sequence, modifications, cleavage)
- Influence on MW, pl, interactions

Covalent oligomerization

MQFLTSLAAASLVSLASARISGIALPQTVKAGDNINAIVVTEGYIQSVQDIAIA FGCAPAASAYPGTLSTLLGSFYLGPEQSNVQNNITEPITIPESLVPGEYVIAASL FSLYGASSSPTVSNYNVTVNVGNETSTTYVRSQFYVGNSNSTVCLGGYTRKI

MQFLTSLAAAASLVSLASARISGIALPQTVKAGDNINAIVVTEGYIQSVQDIAIAFGCAPAA

Glycosylation

SAYPGTLSTLLGSFYLGPEQCNVQNNITEPITIPESLVPGEYVIAASLFSLYGASSSPTVSN

Sample identity

MS identification

1	MKKESINTSG	PDNTK <mark>SSISD</mark>	EIEISNEISW	TALSGVISAA	NNADGR LEVF
51	GVGTNNAVWH	NWQTVPNTGS	SWSGWHSLNE	GATSK PAVHI	NSDGRLEVFV
101	RGTDNALWHN	WQTVPGAGWS	GWQSLGGQIT	SNPVVYINSD	GRLEVFARGA
151	DNALWHIWQT	APHAGPWSNW	QSLNGVLTSD	PTVYVNASGR	PEVFARSNDY
201	SLWYIKQTAS	HTYPWTNWQS	LSGVITSNPV	VISNSDGRLE	VFAR GSDNAL
251	WHIWQVAPNA	GWTNWRSLSG	IITSDPAVHI	NADGRLEVFA	RGPDNALWHI
301	WQTATSDAWS	EWTSLSGVIT	SAPTVAKNSD	GWLEVFARGA	NNALCHIQQT
351	TSSWSTWTSL	GGNLIDASAI	K		

MS intact mass analysis

Post-translational modifications Isotope labeling Matrix adducts

7

Folding – direct evidence of 2D structure

• Circular dichroism (CD)

- Difference in absorption of left and right circularly polarized light by chiral compounds
- Specific shape of spectra for 2D structural elements
- Infrared spectroscopy (FTIR)
 - Specific absorption bands for 2D elements
- Nuclear magnetic resonance (NMR)
 - Behavior of atom nuclei in magnetic field
 - Presence of defined structure results in distinguished peaks in spectrum

Sample purity

Contaminants – co-purified molecules

- Small molecules
 - Co-factors
 - Ligands
 - Salts, imidazole
 - Lipids
 - Saccharides

- Macromolecules
 - Protein isoforms
 - Proteins
 - Nucleic acids
 - Polysaccharides
 - Binding partners

Sample purity – methods

• SDS-PAGE

- UV-VIS spectroscopy
- SEC (SEC-MALS)
- FFF (FFF-MALS)
- Mass spectrometry

small molecules Co-factors Ligands Salts, imidazole Lipids Saccharides

macromolecules Protein isoforms

Proteins Nucleic acids Polysaccharides Binding partners

SDS-PAGE

- Polyacrylamide gel (8 20 %)
- SDS uniform (?) protein charge (composition dependent)
- Reducing agent (optional) β ME
- Staining CBB, Silver, Fluorescent, Radiological

11

SDS-PAGE

TYPICal

Check overloaded as well as underloaded sample

overloaded underloaded

12

UV-VIS spectroscopy

- (200-) 240 340 nm
- Trp (and Tyr) has absorption peak around 280 nm
- Detection of:
 - Nucleic acid contamination
 - Aggregation (scattering)
 - UV-absorbing contaminants

Size exclusion chromatography

- Separation of particles based on "size"
- Interaction with matrix possible (!)
- Usually coupled to multiple detectors (UV, MALS, viscosity)

Field flow fractionation

• Separation of particles in solution by external force

Mass spectrometry

- Detecting of exact mass of particles
- Various applications based on set-up
- Intact mass analysis protein and non-protein contaminants

Sample homogeneity

- Macroscopic precipitation visual detection
- Microscopic oligomeric states, folding states, microheterogeneity – biophysical methods

17

Sample homogeneity vs. purity

• Various methods may evaluate sample in different way

Sample homogeneity – methods

- SEC-MALS, FFF
- Native electrophoresis
- Light scattering
- Analytical ultracentrifuge

Native electrophoresis

- Possibility to observe various oligomers (relatively imprecise) and unreliable) and isoforms (2D PAGE preferred)
- Not efficient for aggregation detection

Light scattering

Interaction of incident light with particles in solution

Laser

Detector

θ

- Intensity of light at given
- Typically red/infrared light

Light scattering

- Dynamic light scattering
 size of particles
 sensitive to aggregation
- Static light scattering
 - mass of particles
 - averaged value, separation required

4.10

arbre-mobieu.eu

Static light scattering (SLS)

Low-angle light scattering (LALS) – big molecules Right-angle light scattering (RALS) – small molecules Multi-angle light scattering (MALS) – M_w and R_g

- Intensity of scattered light
- Mass of the particle (molecular weight)

Static light scattering

- Average of all sample particles !
- Typically coupled to separation (SEC, FFF)

Dynamic light scattering (DLS)

- Time-dependent fluctuations in scattered light
- Size of the particle (hydrodynamic radius)

Dynamic light scattering (DLS)

Microheterogeneity reflects in polydispersity – peak width

 Large particles scatter light with much higher intensity – sensitive to aggregation

Analytical ultracentrifugation (AUC)

- Sedimentation of particles in centrifugal field by hydrodynamic properties
- Two modes:
 - Sedimentation equilibrium mass determination
 - Sedimentation velocity size distribution

	Light scattering	Analytical ultracentrifugation	
Sample volume	0.5-30 ul (DLS) 1-50 ul (SLS <i>,</i> SEC-MALS)	150 – 450 ul	
Sample concentration	0.1 – 200 mg/ml	0.1 – 1 mg/ml	ŝ
Particle size	1 nm – 10 μm	1 – 300 nm	le,
Resolution and accuracy	Low – Average	Average – High	
Speed of analysis	1 min (DLS, SLS) 30 mins (SEC-MALS)	4 hrs (SV) 3-4 days (SE)	

Sample stability

- Temperature stability
- Chemical stability
 - pH
 - Ionic strength
 - Oxidizing agents
 - Protein-specific compounds
 - Long-term stability storage

Temperature

Affects stability and interaction parameters

 $\ln K_{A} = -\frac{\Delta G_{0}}{R(T)}$

 $k = Ae^{\kappa}$

Arrhenius equation

• Typical temperatures:

• Room temperature (RT) – vaguely defined

mostly 20 – 25 °C, but varies from 15 – 30 °C usually means that temperature was not set (!)

 $pH = -\log [H_3O^+]$

Typical range: 4 – 9, specific proteins 1 – 12

рΗ

pH of **pure water**: 7 (theor.), 5.8 (due CO₂ absorption)

Buffers: dissociable compounds with defined pK_a various pH ranges – typically (pK_a–1) – (pK_a+1)

pH – buffers

- Organic/Inorganic
- Universal buffers mixtures with broad pH range 2004 Methods for ch

Good's Buffer	pKa (20 °C)	pH	
MES	6.15	5.5-7.0	
Bis-Tris	6.46	5.7-7.3	
ADA	6.60	5.8-7.4	
PIPES	6.80	6.1-7.5	
ACES	6.90	6.0-7.5	
MOPSO	6.95	6.2-7.4	
BES	7.15	6.6-8.0	
MOPS	7.20	6.5-7.9	
TES	7.50	6.8-8.2	- 0
HEPES	7.55	6.8-8.2	
TAPSO	7.70	7.0-8.2	
POPSO	7.85	7.2-8.5	
HEPPSO	7.90	7.4-8.6	
EPPS	8.00	7.5-8.5	
Tricine	8.15	7.8-8.8	
Bicine	8.35	7.7-9.1	
TAPS	8.40	7.7-9.1	
CHES	9.50	8.6-10.0	
CAPS	10.40	9.7-11.1	

Volume 2, Issue 3, 336-342. DOI: 10.3934/biophy.2015.3.336 Received date 19 April 2015, Accepted date 20 July 2015, Published date 14 August 2015

http://www.aimspress.com/

Letter

Universal buffers for use in biochemistry and biophysical experiments

Dewey Brooke ⁸, Navid Movahed ⁸, and Brian Bothner *

Department of Chemistrv and Biochemistrv. Montana State University. Bozeman MT 59717. USA

33

рΗ

- is **temperature** dependent
- changes with **dilution**
- changes in **time**

Tris buffer pH set to 8.0 at 25°C

Ionic strength

Ionic strength, I, is a measure of the concentration of electrically charged species in solution

$$I=rac{1}{2}\sum_i c_\mathrm{i} Z_\mathrm{i}^2$$

Square root of ionic strenght

Protein solubility changes with ionic strength as well as with solute composition

Impurities/Additives

• Various compounds affect protein stability/solubility

ЭH

ΟН

36

"O

″O

NH₂

HO

NH

H₂N

SH

OH

HS

- Saccharides saccharose, trehalose
- Amino acids Arg, Glu, Pro
- **Reducing/oxidizing** agents βME, DTT, TCEP
- DMSO
- Protein-specific compounds (ligands)

Effect of impurities on ITC

- Determine DMSO concentration
- Match for protein and ligand

Buffer optimization

- Buffer affects:
 - Stability
 - Activity (interactions)
 - Storage
- Many buffers do not meet all requirements

Buffer optimization desired

Buffer optimization

• Various commercial screens available

• Differences in composition, number of conditions

Example: buffer screen designed by CF BIC, CEITEC MU

×.		1	2	3	4	5	6	7	8	9	10	11	12
	Α	H ₂ O					p)H 2-12	2				
	В	pH 4-9.5 (alternate buffers from A row)											
	С	Ionic strength (for pH 6-8)											
	D	Pre-defined buffers Additives											

Buffer optimization

69.9

Best

buffer

> 10°C difference !!!

Sample storage

- Depends on sample stability
- Freezing (phase transition) may decrease protein stability in solution

Avoid repeated freeze-thaw cycles !

- Fridge: 4 °C
- Freezer: 20 °C, 80 °C (cryo-protectants addition glycerol)
- Lyophylization = Freeze-drying: water sublimation

Check sample quality BEFORE and AFTER storage !

etbiomolecular interactions S2004 Methods for characterination of biomolecular international S2004 Methods for characterization of S2004 Methods for characterization **Practical aspects**

Concentration

Concentration	interactions	interac	tions
Method	+	-	
Nitrogen content (e.g. Kjeldahl)	Absolute (golden standard)	Time, sample and equipment demanding	
UV absorbance at 280 nm	Fast, easy, low sample consumption, no calibration	Sequence dependent, buffer influence, (inaccuracy in l, ε)	
Bradford (Coomassie Brilliant Blue)	Easy, fast	Standard dependent (calibration), sequence dependent, buffer influence	jersiti
Bicinchoninic acid	Less buffer dependent	Standard dependent (calibration), more time demanding	
UV absorbance at 205 nm	Less sequence dependent, + the same as A ₂₈₀	Buffer absorbance	

Pipetting

- Pipetting is a science
- Many variables
 - Viscosity
 - Type of tip/pipette
 - Immersion depth
 - Angle
 - Tip-pipette match
 - Pipette holding
 - Moisture

Sample aging

- Check storage conditions
- Avoid freeze-thawing cycles as much as possible
- Check buffer pH^V use freshly prepared buffers
- Batch-to-batch verification

Batch to batch quality check

Enormous amount of variables in preparation process

- Two sample batches may not be the same
- Minimal tests desired to verify sample quality

Temperature

- Many machines keep specific temperature
- Check settings
- Room temperature varies over day, week, seasons
- Avoid "bad spots" in lab heating, direct sun, air conditioning

Clinical and Translational Report Variation in common laboratory test results caused by ambient temperature

Ziad Obermeyer^{1,3,4,*} and Devin Pope^{2,3}

Med

Methods are not identical

- Results from different methods usually vary
- Ideal match of values (e.g. Kd) is unlikely
- Some methods require specific sample preparation and conditions
- Know method principles and limitations !!!
- Know your sample !!!

Biomolecular Interaction and Crystallization Core Facility

Josef Houser • +420 549 492 527 josef.houser@ceitec.cz

CF Head: Michaela Wimmerová

- +420 549 498 166
- michaela.wimmerova@ceitec.cz

bic@ceitec.cz bic.ceitec.cz