Sufrace-based methods

S2004 Methods for characterization of biomolecular interactions – classical versus modern

> Mgr. Josef Houser, Ph.D. houser@mail.muni.cz

Interaction on surface

- Interaction with
 - One binding partner immobilized on surface **ligand**
 - Second binding partner free in solution analyte
- Biosensors based on various techniques
 - Surface plasmon resonance (SPR)
 - Biolayer interferometry (BLI)
 - Grating-Coupled Interferometry (GCI)
 - Quartz-crystal microbalance (QCM)
 - Surface acoustic wave (SAW)
 - Switch-sense

Surface plasmon resonance (SPR)

Collective oscillation of free electrons on metal-dielectric interface

SPR – Basic principles

At the conditions of total internal reflexion (angle, wavelength) the incoming beam evokes exponential wave spread in opticaly less dense environment.

- At certain combination of incident angle and wavelength the free electrons on the metal surface are excited, what causes decrease in reflected light intensity.
- This effect depends on refractive index that varies with the analyte binding to the surfacebound ligand.

SPR – Basic principles

Refractive index change = change in light intensity at certain wavelength.

Corresponds also to change of mass on the chip surface = protein/ligand binding. (1 RU ~ 1 pg/mm²)

SPR – Basic principles

One binding partner immobilized on the chip surface (ligand), second is free in solution (analyte).

BLI – Basic principles

One binding partner immobilized on sensor surface (ligand), second partner is free in solution (analyte).

- Light reflects from the inner tip surface and outer tip surface resulting in formation of interference pattern.
- Binding of analyte on the sensor tip results in **change of the thickness** of the optical layer -> shift in the interference pattern.

 $\frac{d[\mathbf{MX}]}{dt} = k_a [\mathbf{M}] [\mathbf{X}] - k_d [\mathbf{MX}]$

equilibrium: $\frac{d[MX]}{dt} = 0$

 $\underline{k_d}$

K_A

K_D

- Kinetics of interaction
- Steady state

Binding experiment

 $v_{(association)} = k_a * [analyte]_{(solution)}$ $v_{(dissociation)} = k_d * [analyte]_{(bound)}$

 $[analyte]_{(solution)} >> [analyte]_{(bound)}$ v_(association) >> v_(dissociation) association phase

 $v_{(association)} = v_{(dissociation)}$ steady state -> response is proportional to K_D and R_{max}

 $[analyte]_{(solution)} << [analyte]_{(bound)}$ v_{(association)} << v_{(dissociation)} dissociation phase

Simple binding - kinetics

Typical binding curve

- 1⁻Association
- 2 Dissociation
- 3 (Surface regeneration)

Same affinity but different kinetics

- All 4 compounds have the same **affinity** $K_D = 10 \text{ nM} = 10^{-8} \text{ M}$
- The binding kinetic constants vary by 4 orders of magnitude

Same affinity but different kinetics

Kinetics vs. affinity in Drug design

High affinity first aim in drug discovery

BUT

May be caused by high k_a and k_d = fast dissociation (!)

Kinetics – lower k_a AND k_d may mean longer effect

This fact is known but usually not considered

2 LUA Methods for characterization of biomolecular interactions S2004 Methods for characterination of biomolecular international

Simple binding - kinetics

Typical binding curve

- 1⁻Association
- 2 Dissociation
- 3 (Surface regeneration)

Simple binding – specificity Analyte Response RU 500 Analyte 1 **Protein** 400 Matrix Concentration Specificity 300 200 100 Analyte 2 Gold Chip surface 500 600 100 200 400 700 300 0 S Time

Simple binding – kinetics

Simple binding – kinetics

Kinetic evaluation – fitting of association and dissociation curves

Simple binding – single-cycle kinetics

- Association is concentration dependent
- Dissociation is concentration independent
- Multiple concentration followed by single dissociation time effective

Simple binding – steady state

Fast association and dissociation data are not easy to fit

BUT

v_(association) = v_(dissociation) **steady state** -> response is proportional to K_D and R_{max}

Factors influencing binding and response

- Density of the molecules on chip
- Concentration of molecules in solution
- Strength of interaction between both molecules
- Total mass and/or way of binding of analyte
- Portion of active molecules present proper sample characterization needed, changes upon immobilization – site accessibility restriction, conformational changes, intermolecular distance
- Conditions/buffer properties

Sensitivity

• SPR

- Signal proportional to mass on the surface
- High sensitive instruments reliable analysis of <100 Da analytes (e.g. metal ions)
- Suitable for both small molecules and proteins/nucleic acids

• BLI

- Signal proportional to thickness of surface layer
- High sensitive instruments require >1 kDa analyte or structural change of immobilized molecule
- Suitable mainly for proteins/nucleic acids

Which binding	g partner to in	mobilize?	teractions
• Stability	decularine		decularing
• Molecular mass	ofbiomo		oiomo
R	$esponse_{max} = Response_{ligand} x$	$\frac{Mr_{analyte}}{Mr_{ligand}} \times \frac{\left(\frac{2n}{2\pi}\right)_{analyte}}{\left(\frac{2n}{2\pi}\right)_{analyte}}$	
 Immobilization te 	chnique	sor chai	Universit
 Multivalency 	Nethod		

Sensor Chip – rough scheme

Matrix

Protein/Ligand

Chip surface

User-defined biospecific surface

- Biocompatible
- Low non-specific binding
- Robust
- More than 100 runs on the same surface

Immobilization techniques

High flexibility in creating biospecific surfaces

Direct covalent coupling

- Stable
- Suitable regeneration needed

Capture

- Multi-step process
- Less stable binding
- Easier regeneration (not for SA)

- Amine (Lys, N-term)
- Thiol (Cys)
- Aldehyde
- Carboxyl

- Streptavidin Biotin
- NTA-Ni²⁺ His₆
- Anti-His His₆
- ProteinA mÅb
- Anti-GST GST

Protein immobilization

N-ethyl-*N*′-(3-diethylaminopropyl)karbodiimide

N-hydroxysuccinimide

CM5 chip – surface modified by carboxymethylated dextran

Flexibility in Assay Design

Multiple assay formats providing complementary data

Inhibition in solution assay

concentration

0-80 mM D-galactose

Inhibition in solution assay

50 %

100 %

37

Lectin from *B. cenocepacia*:

Benzyl-α-D-mannoside ≈ Methyl-α-D-mannoside ≈ D-mannose » L-fucose > D-arabinose > L-galactose > Methyl-α-L-fucoside » D-galactose

Two channels necessary - reference

- "Non-interacting" surface serves as a blank
- Elimination of non-specific interactions
- Enhancement of weak interaction resolution
- Possible reference surfaces:
 - Unmodified surface gold, dextran layer,...
 - Activated and blocked surface without immobilized ligand/protein
 - Inactivated/non-functional ligand/protein_

Multichannel set-up

- One or more references
- Multiple channels 2, 4, 6, 36,...
- Multiple detection spots
- High throughputParallel reference

flow vertically or

be used to immobilize two independent ligands within one flow cell for the simultaneous evaluation of small molecule binding.

Figure 3. Assay flexibility of Blacore S51 flow cell and hydrodynamic addressing, illustrating three potential assay designs.

Specialized techniques

- Membrane proteins
- Multi-layer approaches Ab's, protein complexes
- Whole **cell** immobilization
- Thermodynamics measured by SPR
- Ligand recovery

- A very quick and easy method for functional reconstitution of immobilized membrane proteins with lipids.
- Conventional immobilization techniques are applicable on membrane proteins.
- Surfaces with high density of receptor can be prepared.
- The lipid matrix can be renewed after every cycle.
- "Lipid bilayers" can be very rapidly and easily built and rebuilt on Pioneer Chip L1 (Biacore).

Immobilize a GPCR-specific mAb on a L1 chip.

Y de

Capture a detergent-solublized GPCR on the immobilized mAb surface.

Wash the surface with buffer

Establish the integrity of the reconstituted GPCR

<u>} / / /</u>

Study the kinetics of ligand/receptor interactions

Binding of the chemokine SDF1 α to the reconstituted CXCR4 receptor

Main SPR biosensors

- *GE Healtcare* Biacore S200, Biacore T200, Biacore 4000, Biacore 3000, etc.
- Reichert SR7000DC
- BioRad ProteOn™ XPR36
- Biosensing Instrument Bi4000, Bi3000, etc.
- Nicoya Alto, OpenSPR

ProteOn[™] XPR36

High-throughput SPR

Biacore 8K (highest model)

- 16 channels
- Up to 4x384 samples in a run
- 2300 interacting molecules/day
- 64 kinetic characterizations/4 hrs

Single-cycle kinetics (SCK)

Ex. Cycle 2: 5× sample conc. (Cycle 1: 5× blank conc.)

2D kinetics

SCK

· 20 kinetics

4

 1×10^{-1}

Log k, 15")

- · Sample diluted in two dimensions to cover a wide concentration range
- No preknowledge of affinity or regeneration needed

Ex. Cycle 2: sample in 24 concentrations (Cycle 1: blank cycle)

Main BLI biosensors

• *Fortebio* – BLItz, Octeet R2, Octet R4, Octet R5, Octet R4, Octet R5, Octet R4, Octet R5, Oct

BLIEZ

BLItz

• *Gator Bio* – Gator

Octet R2

High-throughput BLI

Octet HTX

- Up to 96 samples simultaneously
- 96 samples quantitation/2 mins
- Up to 32x32 epitope binning/8 hrs

analytica-world.com

Objectives of SPR/BLI experiment

On-surface technology advantages

- No labeling
- Real-time
- Unique, high quality data on molecular interactions
- Simple assay design
- Robust and reproducible
- Walk-away automation
- Small amount of sample required

Method comparison

Method comparise			on interactions			interactions	
		SPR	BLI	MST	ITC	AUC	
	Parameters	K _D /K _A , k _{on} , k _{off}	K _D /K _A , k _{on} , k _{off}	K _D /K _A , N	κ _d /κ _a , n, ΔG, ΔΗ, ΔS	K _D /K _A , N	
	K _D range [M]	10 ⁻¹³ - 10 ⁻³	10 ⁻¹¹ - 10 ⁻³	$10^{-11} - 10^{-1}$	$10^{-12} - 10^{-2}$	$10^{-8} - 10^{-4}$	
	Speed (per K _D)	15 – 120 min	15 – 60 min	15 – 30 min	30 – 120 min	4 – 72 hod	
	Sample modification	Immobilization	Immobilization	Labeling	None	None	
	Complex samples	\checkmark	\checkmark	\checkmark	×	×	
	High throughput	\checkmark	\checkmark	\checkmark	\checkmark	×	

Materials for further study

http://www.sprpages.nl/

The SPRpages are not affiliated to a specific SPR instruments vendor. Therefore, the SPRpages do not receive money to maintain the site. Donate to the SPRpages and support this valuable community resource. You can also sponsor the SPRpages. Please contact me via the contribute page.

Materials for further study

Biomolecular Interaction and Crystallization Core Facility

Josef Houser • +420 549 492 527 josef.houser@ceitec.cz

CF Head: Michaela Wimmerová

- +420 549 498 166
- michaela.wimmerova@ceitec.cz

bic@ceitec.cz bic.ceitec.cz