

able 1: Basic Characteristics of Surface and Atmospheric Urban Heat Islands (UHIs) ⁴		
Feature	Surface UHI	Atmospheric UHI
Temporal Development	 Present at all times of the day and night Most intense during the day and in the summer 	May be small or non-existent during the day Most intense at night or predawn and in the winter
Peak Intensity (Most intense UHI conditions)	 More spatial and temporal variation: Day: 18 to 27°F (10 to 15°C) Night: 9 to 18°F (5 to 10°C) 	 Less variation: Day: -1.8 to 5.4°F (-1 to 3°C) Night: 12.6 to 21.6°F (7 to 12°C)
Typical Identification Method	Indirect measurement: Remote sensing	Direct measurement: Fixed weather stations Mobile traverses
Typical Depiction	Thermal image	Isotherm map Temperature graph

4.3 Measuring the UHI effect

- "Point" measurements standard meteorological stations
- "Point" measurements special-purpose automatic stations
- Mobile measurements
- Urban remote sensing
- Urban climate and UHI intensity modelling

All types of measurements also involve three different components that are hardly to quantify (Lowry 1977):

- 1. the "backgound" climate
- 2. the effects of local climate (topoclimate)
- 3. the effect of local urbanization

Where are the spatial limits of the urban effect?

UHI consequences

- UHI impacts may be **direct** and **indirect**, negative effects prevail in general
- Diurnal Temperature Range is smaller in cities
- Higher air pollution reduce nighttime cooling, both factors increase a discomfort for city dwellers
- Increased temperatures during summer in cities amplify energy demand for air conditioning.
- Higher surface temperatures can heat storm water runoff with negative effect of various water ecosystems (thermal pollution)
- Impacts to plants through changes in phenology may be ambiguous (beginning and end of individual phases of the growing cycle)

4.5 Final remarks and questions

- How do Urban Heat Islands form?
- How we can estimate UHI intensity depending on available data?
- What are the main problems related to UHI?
- What is a relation between heat waves and UHI?
- Can be there any benefits of UHI?
- Is there any relation to recent global climate change?

(Strategies to Reduce Urban Heat Islands will be discussed in the final lecture)