
Polyploid hybrid speciation

Soltis & Soltis (2009) The Role of Hybridization in Plant Speciation. *Ann Rev* **60**: 561-588. Paun et al. (2009) Hybrid speciation in angiosperms: Parental divergence drives ploidy. *New Phytol* **182**: 507-518. Otto (2007) The Evolutionary Consequences of Polyploidy. *Cell* **131**: 452-462.

Ramsey & Schemske (1998) Pathways, mechanisms and rates of polyploid formation in flowering plants. Ann Rev 29: 467-501

Polyploid hybrid speciation - origin, reproductive isolation

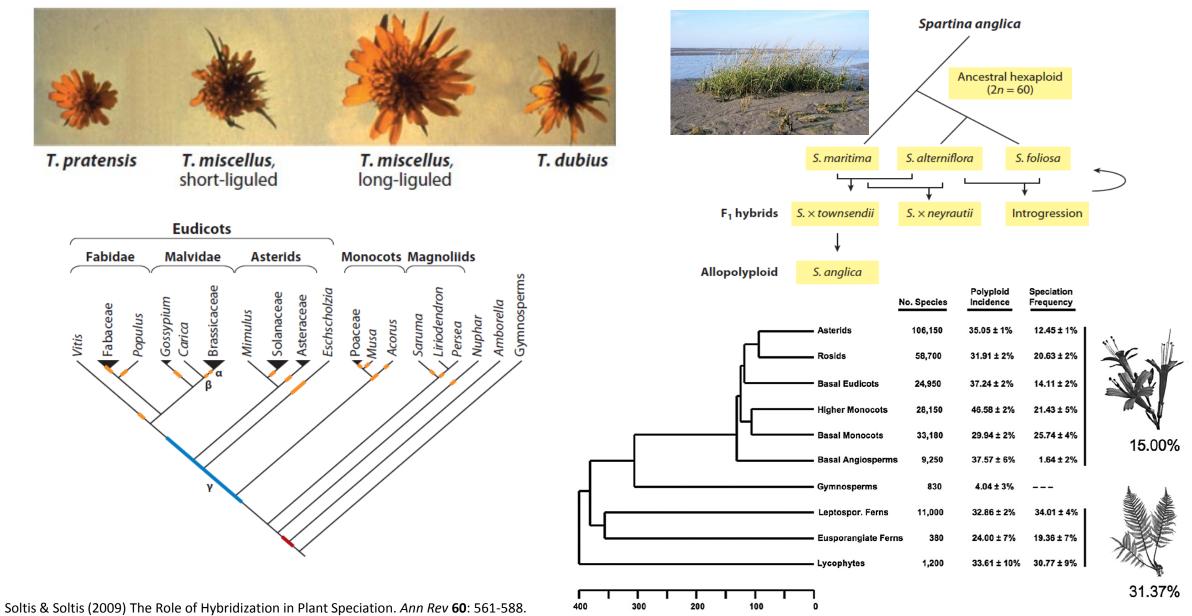
Soltis & Soltis (2009) The Role of Hybridization in Plant Speciation. *Ann Rev* **60**: 561-588. Riesberg & Willis (2007) Plant Speciation. *Science* **317**: 910-914.

Ramsey & Schemske (1998) Pathways, mechanisms and rates of polyploid formation in flowering plants. Ann Rev 29: 467-501.


Polyploid hybrid speciation – disadvantages and advantages Latitudinal gradient in mean genome size (2C) in flowering plants Latitudinal gradient in frequency (%) of polyploids in flowering plants Homologs. Homeologs **Tetraploid b** Meiotic errors Gametes Gametes

Soltis & Soltis (2009) The Role of Hybridization in Plant Speciation. *Ann Rev* **60**: 561-588. Barringer (2007) Polyploidy and self-fertilization in flowering plants. *Am J Bot* **94**: 1527-1533. Comai (2005) The advantages and disadvantages of being polyploid. *Nature Reviews* **6**: 837-846.

Barke et al. (2020) The relation of meiotic behaviour to hybridity, polyploidy and apomixis in the Ranunculus auricomus complex (Ranunculaceae). BMC Plant Biol 20: 523.


Table 16.1 Frequency of polyploidy, the highest known ploidy level and the record-holder species in different plant groups. The groups do not represent comparable phylogenetic/taxonomic categories (Data compiled from different sources)

Plant group	Number of extant species	Incidence of polyploidy	Maximum ploidy level	Record-holder
Glaucophytes (Glaucophyta)	13	Unknown	Unknown	-
Red algae (Rhodophyta)	~6,000	Frequent	Moderate (~16-ploid)	Polyides rotundus, $n = 68-72$ (Cole 1990)
Chlorophyta (Green algae s.s.)	~3,800	Frequent	Moderate (~20-ploid)	Eraemosphaera viridis, n = 80 (Mainx 1927)
Charophyta (Green algae, streptophyte algae)	~5,000	(Very) frequent	(Very) high	Netrium digitus, $n = 592$ (King 1960)
Liverworts (Marchantiophyta)	~5,000	Rare (~8%)	Rather low (~12-ploid)	Riccia macrocarpa, $n = 48$ (Przywara and Kuta 1995)
Mosses (Bryophyta s.s.)	~12,000	Ambiguous (c. 20–80%)	Moderate (~16-ploid)	Leptodictyum riparium, Physcomitrium pyriforme, n = 72 (Przywara and Kuta 1995)
Hornworts (Anthocerotophyta)	~150	Absent	_	Anthoceros sampalocensis, $n = 10$ (Przywara and Kuta 1995)
Lycopods (Lycopodiophyta)	~900	(Very) frequent	Very high (~50-ploid)	Huperzia prolifera, $2n = \sim 556$ (Tindale and Roy 2002)
Ferns and allies (Monilophyta)	~11,000	Very frequent (up to ~95%)	Very high (~96-ploid)	Ophioglossum reticulatum, $2n = \sim 1440$ (Khandelwal 1990)
Cycads (Cycadophyta)	~250	Absent	-	Zamia paucijuga, Z. prasina, 2n = 28 (Moretti and Sabato 1984)
Ginkgo (Ginkgophyta)	1	Absent	_	2n = 24
Conifers (Pinophyta)	~550	Very rare (<2%)	Low (hexaploid)	Sequoia sempervirens, $2n = 66$ (Hirayoshi and Nakamura 1943)
Gnetophytes (Gnetophyta)	~50	Moderate (~30%)	Low (octoploid)	Ephedra funerea, E. gerardiana, $2n = 56$ (Ickert-Bond 2003)
Monocots	~60,000	Very frequent (~75%)	Very high (~50-ploid)	Voanioala gerardii, $2n = \sim 596$ (Johnson et al. 1989)
Dicots s.l.	~200,000	Very frequent (~75%)	Very high (~80-ploid)	Sedum suaveolens, $2n = \sim 640$ (Uhl 1978)

Sedum suaveolens

Polyploid hybrid speciation – recent and ancient polyploid speciation

Soltis & Soltis (2009) The Role of Hybridization in Plant Speciation. *Ann Rev* **60**: 561-588. Wood et al. (2009) The frequency of polyploid speciation in vascular plants. *PNAS* **106**: 13875-13879.

Divergence Times (millions of years)