# LABORATORIES

# **Protein Engineering**

Bi7430 Molecular Biotechnology

# Outline

- □ Limitations of proteins in biotechnology processes
- Definition and aim of protein engineering
- □ Targeted properties of proteins
- □ Basic approaches in protein engineering
  - DIRECTED EVOLUTION
  - RATIONAL DESIGN
  - SEMI-RATIONAL DESIGN

□ Examples, application of artificial inteligence

# Proteins in biotechnology

- □ key problem -availability of optimal protein for specific process
- traditional biotechnology adapt process
- modern biotechnology adapt protein

#### HOW TO OBTAIN OPTIMAL PROTEIN?



# Proteins in biotechnology

#### classical screening

- screening culture collections
- polluted and extreme environment

#### environmental gene libraries

metagenomic DNA

#### data-base mining

- gene databases
- (meta)genome sequencing projects
- numerous uncharacterised proteins

| Automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Submit new job</u> Help Example Acknowledgements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Job ID: e.g. xxxxxx Find j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ABOUT<br>EnzymeMiner identifies putative members of enzyme families and facilitates the selection of promising targets for experiments. The server mines<br>sequences that are likely to show the desired catalytic activity. Key selection criteria are: (i) predicted soluble expression in <i>Escherichia coli</i> , (ii)<br>sequence identity, and (iii) deposit date. The search query can be a sequence from the Swiss-Prot database or a custom sequence with specified<br>essential residues. The output is an interactive selection table and a sequence similarity network.<br>User guide [Example results<br>Hide | HEFRENCES<br>Hon, J., Borko, S., Stourac J., Prokop, Z.,<br>Zenoulas, J., Bednar D., Martinek, T.,<br>Dambonek, J. 2020. Enzymekinem<br>automates mining of touluie enzymekinem<br>schadmates Houziek Acids<br>properties and stabilizes. Nucleic Acids<br>Research 49 (WY): W104-W105<br>Public Control Control Control Control<br>Public Control Control Control Control<br>Science Acids Control Control Control<br>Public Control Control Control Control<br>Science Acids Control Control Control<br>Public Control Control Control Control Control<br>Science Acids Control Control Control Control<br>Public Control Control Control Control Control<br>Public Control Control Control Control Control Control<br>Public Control Control Control Control Control Control Control<br>Public Control Control Control Control Control Control<br>Control Control Control Control Control Control Control Control<br>Control Control Control Control Control Control Control Control<br>Control Control Control Control Control Control Control Control Control<br>Control Control Control Control Control Control Control Control Control<br>Control Control Co |
| Swiss-Prot sequences 🖗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Number of visitors: 8202     Number of jobs: 1542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Enter EC number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONTACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Advanced options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Loschmidt Laboratories  enzymeminer@sci.muni.cz https://ioschmidt.chemi.muni.cz/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OTHER TOOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |





# Proteins in biotechnology

#### classical screening

- screening culture collections
- polluted and extreme environment

#### environmental gene libraries

- metagenomic DNA
- data-base mining
  - gene databases
  - (meta)genome sequencing projects
  - numerous uncharacterised proteins



#### IF SUITABLE PROTEIN DOES NOT EXIST IN NATURE?

### **PROTEIN ENGINEERING**

# Aims of protein engineering

- the process of constructing novel protein molecules by design first principles or altering existing structure
- use of genetic manipulations to alter the coding sequence of a gene and thus modify the properties of the protein
- AIMS AND APPLICATIONS
  - technological optimisation of the protein to be suitable in particular technology purpose
  - scientific desire to understand what elements of proteins contribute to folding, stability and function

# Targeted properties of proteins

#### □ structural properties of proteins

- stability (temperature, solvents)
- tolerance to pH, salt
- resistance to oxidative stress



#### **functional** properties of proteins

- substrate specificity and selectivity
- kinetic properties (e.g., K<sub>m</sub>, k<sub>cat</sub>, K<sub>i</sub>)
- cofactor selectivity
- protein-protein or protein-DNA interactions



Reaction coordinate

# Strategies in protein engineering

### **RATIONAL DESIGN**

1. Computer aided design



2. Site-directed mutagenesis



- 3. Transformation
  - 4. Protein expression
    - 5. Protein purification
      - 6. not applied



Improved protein

7. Biochemical testing



Constructed mutant enzyme

#### DIRECTED EVOLUTION

1. not applied



- □ directed evolution techniques emerged during mid-1990s
- inspired by natural evolution
- □ this form of "evolution" does not match what Darwin had envisioned
  - requires outside intelligence, not blind chance
  - does not take millions of years, but happens rapidly

### Frances H. Arnold



Frances H. Arnold The Nobel Prize in Chemistry 2018

Born: 25 July 1956, Pittsburgh, PA, USA

Affiliation at the time of the award: California Institute of Technology (Caltech), Pasadena, CA, USA

Prize motivation: "for the directed evolution of enzymes."

Prize share: 1/2

# **Directed evolution**

- evolution in test tube comprises two steps
  - random mutagenesis
     building mutant library (diversity)
  - screening and selection
     identification of desired biocatalyst

#### prerequisites for directed evolution

- gene encoding protein of interest
- method to create mutant library
- suitable expression system
- screening or selection system



1. not applied



- activity





Improved

protein

Selected mutant enzymes

# Methods to create mutant libraries

technology to generate large diversity

NON-RECOMBINING

one parent gene -> variants with point mutations



RECOMBINING

several parental homologous genes -> chimeras



# Non-recombining mutagenesis

- UV irradiation or chemical mutagens (traditional)
- mutator strains lacks DNA repair mechanism mutations during replication (e.g., Epicurian coli XL1-Red)
- error-prone polymerase chain reaction (ep-PCR)
  - gene amplified in imperfect copying process

     (e.g., unbalanced deoxyribonucleotides concentrations,
     high Mg<sup>2+</sup> concentration, Mn<sup>2+</sup>, low annealing temperatures)
  - 1 to 20 mutation per 1000 base pairs
- **a** saturation mutagenesis
  - randomization of single or multiple codons
  - gene site saturation mutagenesis
- **other methods** 
  - insertion/deletions (InDel)
  - cassette mutagenesis (region mutagenesis)





# Recombining mutagenesis

also referred to as "sexual mutagenesis"

### DNA shuffling

- fragmentation step
- random reassembly of segments

**StEP** - staggered extension process

- simpler then shuffling
- random reannealing combined with limited primer extension

#### other methods

shuffling of genes with lower homology down to 70%

(e.g., RACHITT, ITCHY, SCRATCHY)



# Screening and selection

- most critical step of direct evolution
- □ isolation of positive mutants hiding in library
  - HIGH THROUGHPUT SCREENING

individual assays of variants one by one



DIRECT SELECTION

display techniques (link between genotype and phenotype)





# (Utra)High throughput screening

- common methods not applicable
- agar plate (pre)screening
- microtiter plates screening
  - 96-, 384- or 1536-well formate
  - robot assistance
     (colony picker, liquid handler)
  - 10<sup>4</sup> libraries
  - volume 10 100 uL

### □ microfluidic systems (Lesson 6)

- water in oil emulsions (up to 10 kHz)
- FACS sorting (10<sup>8</sup> events/hour)
- 10<sup>9</sup> libraries
- volume 1 10 pL













# **Direct selection**

- not generally applicable (mutant libraries >10<sup>6</sup> variants)
- Iink between genotype and phenotype
- display technologies
  - ribosome display
  - phage display

#### life-or-death assay

- auxotrophic strain
- toxicity based selection





- directed evolution of enantioselectivity
  - lipase from P. aeruginosa (E-value improved from 1.1 into 51)
  - spectrophotometric screening of (R)- and (S)-nitrophenyl esters
  - 40 000 variants screened
  - the best mutant contains six amino acid substitutions





Reetz, M., et al. 2001. Angew. Chem. Int. Ed. 40: 3589-91

# Strategies in protein engineering

### **RATIONAL DESIGN**

1. Computer aided design



2. Site-directed mutagenesis



- 3. Transformation
  - 4. Protein expression
    - 5. Protein purification
      - 6. not applied



Improved protein

7. Biochemical testing



Constructed mutant enzyme

#### DIRECTED EVOLUTION

1. not applied



- emerged around 1980s as the original protein engineering approach
- □ knowledge based combining theory and experiment
- protein engineering cycle:

"structure-theory-design-mutation-purification-analysis"

- **difficulty in prediction** of mutation effects on protein property
- de novo design most challenging

# Principal of rational design

1. Computer aided design



2. Site-directed mutagenesis



Individual mutated gene

- 3. Transformation
  - 4. Protein expression
    - 5. Protein purification

6. not applied



Improved protein



Constructed mutant enzyme

7. Biochemical testing

a rational design comprises:

- design understanding of protein functionality
- experiment construction and testing of mutants

prerequisites for rational design:

- gene encoding protein of interest
- 3D structure (e.g., X-ray, NMR) or sequence alignment
- structure-function relationship
- computational methods and capacity
- side directed mutagenesis techniques
- efficient expression system
- biochemical tests

# Design

#### **SEQUENCE HOMOLOGY APPROACH**

- homologous wild-type sequences alignment
- identifying amino acid residues responsible for differences
- design combination of possitive mutation from all parental proteins

#### ANCESTRAL RECONSTRUCTION

- construction of phylogenetic tree
- design nods prediction by consensus approach



# Design

#### **SEQUENCE HOMOLOGY APPROACH**

- homologous wild-type sequences alignment
- identifying amino acid residues responsible for differences
- design combination of possitive mutation from all parental proteins

#### ANCESTRAL RECONSTRUCTION

- construction of phylogenetic tree
- design nods prediction by consensus approach







# Bioinformatika Bi5000

- Období: podzim
- Rozsah: přednáška 2 hodiny/týden, cvičení 2 hodiny/týden
- Vyučující: prof. Mgr. Jiří Damborský, Dr., doc. RNDr. Roman Pantůček, Ph.D.,
- Osnova:
  - bioinformatické databáze a jejich prohledávání
  - analýza nukleotidových a proteinových sekvencí
  - hledání a identifikace genů
  - analýza a předpověď struktury proteinů



# Design

#### **STRUCTURE-BASED APPROACH**

- prediction of enzyme function from structure alone is challenging
- protein structure (X-ray crystallography, NMR, homology models!)
- molecular modelling
  - $\circ$  molecular docking
  - o molecular dynamics
  - quantum mechanics/molecular mechanics (QM/MM)



# Strukturní biologie Bi9410

- Období: podzim
- Rozsah: přednáška 2 hodiny/týden, cvičení 2 hodiny/týden
- Vyučující: Mgr. David Bednář
- Osnova:
  - struktura, stabilita a dynamika biologických makromolekul
  - makromolekulární interakce a komplexy
  - stanovení a předpověď struktury, identifikace důležitých oblastí
  - stanovení vlivu mutace na strukturu a funkci proteinu
  - aplikace v biologickém výzkumu, návrhu léčiv a biokatalyzátorů









# Construction

#### site-directed mutagenesis

- introducing point mutations
- multi site-directed mutagenesis
- **gene synthesis** 
  - commercial service
  - codone optimisation







#### rational design of protein stability

- stability to high temperature, extreme pH, proteases etc.
- stabilizing mutations increase strength of weak interactions
  - salt bridges and H-bonds
     Eijsink et al., Biochem. J. 285: 625-628, 1992
  - S-S bonds
     Matsumura et al., Nature 342: 291-293, 1989
  - addition of prolines
     Watanabe et al., Eur. J. Biochem. 226: 277-283, 1994
  - less glycines
     Margarit et al., Protein Eng. 5: 543-550, 1992
  - oligomerisation
     Dalhus et al., J. Mol. Biol. 318: 707-721, 2002



OH

ЮH

#### engineering protein to resist boiling

- reduced rotational freedom Ser65Pro, Ala96Pro
- introduction of disulfide bridge Gly8Cys + Asn60Cys
- improved internal hydrogen bond Ala4Thr
- filling cavity Tyr63Phe



| 80°C   | 100°C |
|--------|-------|
| 17.5   | >0.5  |
| stable | 170   |
|        | 17.5  |

#### Burg, B., et al., 1998. PNAS 95: 2056-2060

### **RATIONAL DESIGN**

1. Computer aided design



2. Site-directed mutagenesis



Individual mutated gene

- 3. Transformation
  - 4. Protein expression
    - 5. Protein purification

6. not applied



**ENZYME** 

Constructed mutant enzyme

7. Biochemical testing

# Strategies in protein engineering

#### DIRECTED EVOLUTION

1. not applied



# Strategies in protein engineering

### **RATIONAL DESIGN**

1. Computer aided design



2. Site-directed mutagenesis



- 3. Transformation
- 4. Protein expression
  - 5. Protein purification

6. not applied



#### DIRECTED EVOLUTION

#### SEMIRATIONAL DESIGN



- 3. Transformation
- 4. Protein expression
- 5. not applied
- 6. Screening and selection
  - stability - selectivity

- affinity - activity



Constructed mutant enzyme

7. Biochemical testing

Selected mutant enzymes

conversion of 1,2,3-trichloropropane
 by DhaA from *Rhodococcus erythropolis* Y2







conversion of 1,2,3-trichloropropane

by DhaA from Rhodococcus erythropolis Y2

**DIRECTED EVOLUTION** - importance of access pathways



Bosma, et al. 2002: AEM 68: 3582-87 Gray, et al. 2003: Adv. Appl. Microbiol. 52: 1-27

□ conversion of 1,2,3-trichloropropane

by DhaA from Rhodococcus erythropolis Y2

- **DIRECTED EVOLUTION** importance of access pathways
- **SEMI-RATIONAL DESIGN** hot spots in access tunels
- library of 5,300 clones screened







Pavlova, et al. 2009: Nature Chem. Biol. 5: 727-733



Pavlova, et al. 2009: Nature Chem. Biol. 5: 727-733

#### STANDARD DESIGN

- random mutagenesis (2-3 positions)
- library of 10<sup>4</sup> clones



#### ADVANCED DESIGN

- random mutagenesis (5-7 positions)
- library of >10<sup>6</sup> clones







volume: 10´pL assays/day: 10<sup>7</sup>



# Al in Protein Engineering

#### DEEP MUTATIONAL SCANNING supervised learning



#### SEQUENCE BASED PREDICTION supervised learning



#### MOLECULAR DYNAMICS unsupervised learning



#### STRUCTURE PREDICTION deep learning



□ ... next week (Lesson 7)

ACS Catal. 10, 1210-1223 (2020) - 105

# AI in Biology, Chemistry, and Bioengineering Bi9680En

- Období: podzim
- Rozsah: přednáška 2 hodiny/týden
- Vyučující: Dr. Stanislav Mazurenko
- Osnova:
  - modern bio-challenges: drug design, DNA interpretation, protein engineering
  - types of AI algorithms and workflow for designing predictors
  - clustering algorithms, random forests, artificial neural networks
  - features, databases, and predictors used in applications







# Tools for protein engineering



CAVER provides rapid, accurate and fully automated calculation of tunnels and channels in static and dynamic structures. The molecules amendable to analysis of CAVER include proteins, nucleic acids, or inorganic materials.

The software is available as CAVER 3.0 command-line version, CAVER 3.0 PyMol plugin or graphical application CAVER Analyst 1.0. The latest version of CAVER enables the analysis of molecular dynamics simulations. CAVER Analyst allows easy set-up of calculation, visualization of results, and efficient visual analysis of data.

#### Bioinformatics 34: 3586-3588 (2018)

Bioinformatics 35: 4986-4993 (2019) Nucleic Acids Res. 47: W414-W422 (2019)



Nucleic Acids Res. 48, W356-W362 (2018)



Nucleic Acids Res. 45, W393-W399 (2017)



Brief. Bioinform., bbaa337 (2020)



https://loschmidt.chemi.muni.cz/portal/

www.enantis.com

CAVER cited in NATURE

site loop variations adjust ..

CAVER was recently cited in NATURE Communications in paper Active-

Read more

View all news

Communications ebruary 23, 2021

Search

# Proteinové inženýrství Bi7410

- Období: jaro
- Rozsah: přednáška 1 hodina/týden
- Vyučující: doc. Radka Chaloupková, Ph.D.
- Osnova:
  - strukturně-funkční vztahy proteinů
  - metody exprese a purifikace rekombinantních proteinů
  - metody strukturní a funkční analýzy proteinů
  - racionální design, semi-racionální design a řízená evoluce
  - příklady využití proteinového inženýrství



# Reading

#### Lutz, S. 2010: Beyond directed evolution - semi-rational

protein engineering and design. Curr Opin Biotechnol. 21(6):

734-743

Computational enzyme redesign and Computational de novo enzyme design (page 5-7)



Author Manuscript

Curr Opin Biotechnol. Author manuscript; available in PMC 2011 December 1

Published in final edited form as: *Curr Opin Biotechnol.* 2010 December ; 21(6): 734–743. doi:10.1016/j.copbio.2010.08.011.

Beyond directed evolution - semi-rational protein engineering and design

#### Stefan Lutz

Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322

#### Abstract

Over the last two decades, directed evolution has transformed the field of protein engineering. The advances in understanding protein structure and function, in no insignificant part a result of directed evolution studies, are increasingly empowering scientists and engineers to device more effective methods for manipulating and tailoring biocatalysts. Abandoning large combinatorial libraries, the