The role of physical phenomena on development
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Mechanosensing in embryogenesis

Mechanical force is an invisible but ubiquitous part of biological systems.

* Forces such as gravity and osmotic pressure set physical limits for the
body's plane. At the same time, the cells of the embryo use these forces
to create the complex shapes that we find in the animal kingdom.

« The mechanical forces generated by living cells at the molecular level
have a great impact on embryogenesis.

« The direct result of the action of force is the movement that occurs during
the separation of chromosomes, the migration of cells or the folding of
tissues.

« Aless direct, but equally important effect of force is the activation of
mechanosensitive signaling, which allows cells to explore their
mechanical surroundings and communicate with each other over short
and long distances = > mechanical forces are a way of communicating




Mechanosensing in embryogenesis

» The ability of cells to "perceive" mechanical signals and convert them
iInto biochemical signals.

 And how/what does it "perceive”?
* lon channels

* Primary cilium

* Integrins

« Cadherins

 Actin/Myosin cytoskeleton

* Notch

« Growth factor receptors



Mechanosensing in embryogenesis
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Mechano reception in embryogenesis
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Many mechanical forces act on the cell:

 Intrinsic: osmotic pressure, contractility of actin and

myosin
« External: shear stress, gravity, stretching

Forces are perceived and interpreted by mechanosensors
(adhesive molecules, ion channels), which then lead to a

change in gene expression.
This leads to the cell reaction -> a change in cell/tissue

morphology

Current Opinion in
https://doi.org/10.1016/j.ceb.2020.08.007 BIOlOgy






Mechanosensing in embryogenesis — Cadherin/-catenin —
gastrulation and induction of mesoderm
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» During the gastrulation, there is a movement of cells = > the action of mechanical forces.
» These forces activate the (3-catenin pathway, which contributes to the mesoderm
specification by activating the expression of genes that specify the mesoderm

- Current Opinion in
https://doi.org/10.1016/j.ceb.2020.08.007 BIOlOgy




Mechanosensing in embryogenesis — Cadherin/-catenin —

gastrulation and induction of mesoderm

B-Catenin is a primary molecule in mechanoreception

in the nucleus as a transcription factor (regulates gene expression)
but also structural role in adherens junctions (link between E-cadherin
and cytoskeleton)

Cadherin-catenin-actin "axis" is under constant mechanical pressure
not only due to the internal contractility of actin. An external
mechanical stimulus acts on the intercellular contacts and increases
this pressure, resulting in a sense of mechanical pressure (1 nm).
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Mechanosensing in embryogenesis — Cadherin/f-catenin —
gastrulation and induction of mesoderm
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Mechanosensing in embryogenesis — Cadherin/f-catenin —
gastrulation and induction of mesoderm

Blockage of gastrulation movements (genetic, pharmacol.) leads to inhibition of mesodermal genes —

repeated action of mechanical forces saves the phenotype and expression of mesoderm. Genes
* Feedback for signal pathways.
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Mechanosensing in embryogenesis — Cadherin/-catenin —
gastrulation and induction of mesoderm
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Mechanosensing in embryogenesis — Cadherin/-catenin —
gastrulation and induction of mesoderm
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Intercellular mechanosensing and tissue growth - Hippo

Hippo not only in size control

Drosophila
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Intercellular tension and tissue growth - Hippo

ECM stiffness, cell density, cytoskeleton pressure affect YAP/Yki localization
Molecular mechanism is unclear
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» After fertilization, the mammalian zygote produces about 100 cells
within about 4 days.

Embryoblast (ICM): Oct4, Nanog, Sox2
Trophectoderm (TE): CDX2

» These factors determine individual cell lines, but how did the
individual lines were generated?

» The position of blastomeres in the embryo. Different polarity and
adhesion of cells.
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Shear stress
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Shear forces
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Shear forces and heart development

* The heart begins its development as a tube and gradually develops into a
multi-chamber apparatus.

» But in the course of development, it constantly draws blood.

» Blood pressure exerts shear forces on endothelial cells.

» Shear forces are perceived by endothelial cells = > affects their organization
and physiology.
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Shear forces and heart development

Influence of blood flow on cardiac development

Katherine Courchaine !, Graham Rykiel !, Sandra Rugonyi’

HBiomedical Engineering School of Medidne, Oregon Health & Science University, Portland OR, USA




Shear forces and heart development
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Shear forces and heart development

Disruption of shear forces (genetically, surgically, change in viscosity) leads to disorders in valve
development

The development of heart valves therefore depends on the perception of shear forces by
mechanosensitive channels in endothelial cells, thus determining the right place for valve
development and activation of the corresponding genes. 26



Shear forces and heart development

Intracardiac fluid forces are
an essential epigenetic factor
for embryonic cardiogenesis

Jay R. Hove* f, Reinhard W. Kdsterz, Arian S. Forouhar*,
Gabriel Acevedo-Bolton*, Scott E. Fraser} & Mm}e?a Gharib*




Shear forces and heart development
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Food for thought
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Beating heart on a chip: a novel microfluidic
platform to generate functional 3D cardiac
microtissuesy}

Anna Marsano,*? Chiara Conficconi,§2° Marta Lemme, §2° Paola Occhetta,?

Emanuele Gaudiello,? Emiliano Votta,? Giulia Cerino,? Alberto @@:laeuib and
Marco Rasponi*®



Labon
a Chip

Video related to research article ap-

pearing in Lab on a Chip

Anna Marsano, Chiara Conficconi, Maria
Lemme, Paola Occhetta, Emanuele Gaugielio;
Emiliano Votta, Giulia Cerino, Alberto Rgaaeill

and Marco Rasponi
“Beating heart on a chip: a novel micioltigie
platform to generate functional 3D cafciacmis
crotissues”

Read the article at

http://pubs.rsc.org/en/Content/ArticleLanding/2015/LC/C5LCO
1356A
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Mechanical forces and morphogenesis

During the development of mechanical forces cause changes in the
shape, size, number and position of cells, which is accompanied by a
change in gene expression => impact on morphogenesis.

« All of these cellular processes that lead to a change in tissue shape are a
form of force between individual cells, normally mediated by intercellular
adhesion.

This force is generated through:

Actin

Polymerization of micro-domes
Osmotic pressure

Molecular motors - Myosin

32



Mechanosensing in embryogenesis — gastrulation and
induction of mesoderm

Forces in Tissue
Morphogenesis and Patterning

Carl-Philipp Heisenberg'* and Yohanns Bellaiche2*

TInstitute of Science and Technology Austria, 3400 Klosterneuburg, Austria
Anstitut Curie, CNRS UMR3215, INSERM U934, 75248 Paris Cedex 03 nce
*Correspondence: heisenberg@ist.ac.at (C.-P.H.), yohanns.bellaiche@tdtie.ir (Y.B.)
http://dx.doi.org/10.1016/j.cell.2013.05.008




Mechanical forces and morphogenesis

» Changes in the cytoskeleton are transmitted to
neighboring cells and the ECM through the
interconnection of the cytoskeleton to adhesive
molecules that provide cell-to-cell, cell-ECM interaction
(cadherins, integrins).

« Actin-myosin contraction and interaction mediated by
cadherins are basic and evolutionarily conserved
mechanisms that generate and transmit forces for the
formation of morphogenesis (see differential adhesion
hypothesis/equlibrium state in ECM and cell adhesion —
all forces in equilibrium, the state of lowest energy).

Adherens
junction

Actin

Myoll
minifilament

Cortex
tension

Adhesion
tension

Figure 1. Self-Organization of Cells at Steady State Determined by
Actin-Myosin Contractility and Cell Adhesion

(A) Upon cell-cell contact, the contacting cells change their shape in response
to mechanical forces associated with actin-myosin contractility (green arrow)
and adhesion (blue arrow).

(B) In epithelial tissues, adhesive contacts and the actin-myosin network are
organized in belt-like structures at the apical domain of the cell. At steady
state, the arrangement of epithelial cells at their apex isB%termined by
actin-myosin contractility and cell-cell adhesion.



Mechanical forces and morphogenesis
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Mechanical forces and morphogenesis
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Mechanical forces — cell differentiation and proliferation

» The ability of cells to perceive external mechanical forces affects tissue
size and architecture not only by changing their adhesive and
cytoskeletal organization, but also by influencing their differentiation.
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BONUS: Vibrational cues alter developmental timing

Agalychnis callidryas

« It lays eggs on the leaves, which are located above the water

* Normal development lasts 7 days.

* In the case of a predator attack, larvae hatch (within seconds!) if the eggs
have about 5 days of development.

« Signaling an attack of eggs by a predator is through vibration

» This leads to the production of enzymes that disrupt the shell

38
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BONUS: optogenetics

& | Published 2016




BONUS: optogenetics

How optogenetics works

...and insert the DNA into
specific neurons in the brain

mei“\fm”: algae Take the gene for
- this protein...
/ \

Meurons communicate by “firing” This is an electrical

This protein is an ion channel that signal created by opening & closing ion channels.
opens in response to blue light

+
E

A light-sensitive

S0 now you can cause
neurons to fire just by
flashing blue light! ~N

With the right combination of neurons, you can activate an
entire brain circuit to control specific behaviors (like movement) 41







BONUS: optogenetics
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BONUS: Optogenetics in Developmental Biology

- - Early activation -> shortening of the body and cyclops

» Late activation -> symmetry of the heart
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BONUS: optogenetics

ARTICLE

doi:10.1038/nature20587

Gamma frequency entrainment attenuates
amyloid load and modifies microglia
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BONUS: organoids for studying the influence of physical
phenomena on development and physiology

« Organoids are three-dimensional miniatures of organs that have a similar structure
and function to the organ

46



BONUS: organoids for the study of physical phenomena on
development and physiology
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BONUS:
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ARTICLE
Induction of inverted morphology in brain

organoids by vertical-mixing bioreactors

Dang Ngoc Anh Suong'?, Keiko Imamura'?3, Ikuyo Inoue'3, Ryotaro Kabai?, Satoko Sakamoto?,
Tatsuya Okumura®, Yoshikazu Kato® >, Takayuki Kondo'??, Yuichiro Yada"?, William L. Klein
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Conclusion and questions

» How does the cell perceive mechanical forces?

* The role of Cadherins and Integrins in mechno reception? And how does it work?
» Hippo signal pathway and perception of mechanical force.

* How do shear forces affect the development of the heart?

» The importance of mechanoreception during gastrulation
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