Secondary structure diagrams of proteins, protein families and ligands

Radka Svobodová

NCBR, CEITEC MASARYK UNIVERSITY

Current trends: Number of available structures grows

Current trends: Size of deposited structures also grows

year of release [min: 1976; max: 2022]

Current trends: Protein families are getting bigger

structure

Analysis of a whole family

Protein family structures and their analysis

- Comparison of protein family members
 - Different species
 - Different substituents
 - Mutations
 - Active and inactive forms
- Firm (conserved) and flexible regions
- Binding of ligands

Protein family structures and their analysis How to do it?

Cytochrome P450 (protein family 1.10.630.10)

Protein family structures and their analysis How to do it?

(protein family 3.20.20.70)

Cytochrome P450 (protein family 1.10.630.10)

Insight into protein family: Secondary structure 2D diagrams

Protein family structures and their analysis Secondary structure utilization – necessary steps

Detection

Annotation

Visualization

Visualization of secondary structure in 2D: Solved in past? Not for protein families!

ISSUE 1: Similar proteins have different 2D diagrams

RMSD: 2.295 Å

Hera, PDBe

Visualization of secondary structure in 2D: Solved in past? Not for protein families!

ISSUE 2: Secondary structure elements close in 2D diagrams are far in reality

C

Hera, **PDBe**

1tgn:A Annotation -

Visualization of secondary structure in 2D: Solved in past?

ISSUE 3: 2D diagrams does not reflect a shape of a protein

10RW

Protein family based 2D diagrams How to get them?

Input:

Step 1: Detection & annotation

- Find secondary structure elements (SSE)
- Annotate them

Step 2: Statistics

- Average length of SSE
- Average occurence of SSE

Protein family based 2D diagrams How to get them?

Step 3: Construct the 2D diagram

- Group all β-strands into sheets
- Divide the helices and sheets into primary (common for most of the domains) and secondary (the remaining ones).
- **Place all primary** helices and sheets into the 2D diagram.
- Adjust the angles of the primary helices and sheets.
- Add all secondary helices and sheets into the 2D diagram.
- Adjust the angles of the secondary helices and sheets.

Step 4: Draw the 2D diagrams

Protein family 2D diagrams 2DProts database

https://2dprots.ncbr.muni.cz

2DProts

Database of 2D diagrams of domain secondary structures

Examples

Click headings below to expand:

Protein family 2D diagrams 2DProts database

Protein family 2D diagrams 2DProts database

Family 2.140.10.30

2D multi diagram

Multi image for 2.140.10.30 (svg source)

« 2.140.10.20 | 2.150.10.10 »

3D model (CATH)

Domains (325)

- 1j2eA01
- 1j2eB01
- 1n1mA02
- 1n1mB01
- 1nu6A01
- 1nu6B01
- 1nu8A01
- 1nu8B01
- 1orvA01

2DProts outputs 2D diagram of a protein domain

2DProts outputs: Multiple 2D diagram of protein domains in a family

With opacity

No opacity

Superfamily: Dipeptidylpeptidase IV (2.140.10.30)

Superfamily: Rhodopsin 7-helix transmembrane proteins **PROTEIN** (1.20.1070.10) **PROTEIN FAMILY**

Superfamily: Aldolase class I (3.20.20.70)

2DProts integration to CATH

2DProts integration into OverProt https://overprot.ncbr.muni.cz

2DProts integration into OverProt https://overprot.ncbr.muni.cz

Publications

Sillitoe I, ..., Berka K, Hutařová Vařeková I, Svobodová R., et al. (2021). *CATH: increased structural coverage of functional space*. **Nucleic Acids Research**, *49*(D1), D266-D273.

Hutařová Vařeková, I., Hutař, J., Midlik, A., Horský, V., Hladká, E., Svobodová, R., & Berka, K. (2021). *2DProts: database of family-wide protein secondary structure diagrams*. **Bioinformatics**, 37(23), 4599-4601. PRINT ISSN: 0305-1048 ONLINE ISSN: 1362-4962

Nucleic Acids Research

VOLUME 49 DATABASE ISSUE JANUARY 8, 2021 https://academic.oup.com/nar

OXFORD UNIVERSITY PRESS Open Access No barriers to access – all articles freely available online

2DProts: Coloring by structure properties Example: Occurence of secondary structures

Cytochrome reductase, Family 2.140.10.30

Porin Family 2.40.160.10

2DProts: Integration of ligands

PDB ID 2bgn, domain A00

Cytochrome reductase, family 2.140.10.30

NAG (742 pcs)		T22 (4 pcs)	RUF (4 pcs)	P2Y (4 pcs)	0WG (4 pcs)		B2Q (2 pcs)
SO4 (56 pcs)	SC3 (8 pcs)	6RL (4 pcs)		803 (4 pcs)	0QG (4 pcs)	008 (4 pcs)	PS4 (2 pcs)
NA (20 pcs)	6Z8 (8 pcs)		7AC (4 pcs)	BPR (4 pcs)	AES (4 pcs)	01T (4 pcs)	677 (2 pcs)
HG (10 pcs)	XIH (5 pcs)	8VU (4 pcs)		007 (4 pcs)		LUI (4 pcs)	277 (2 pcs)
eEDO (9 pcs)	715 (4 pcs)	RUM (4 pcs)	PHI (4 pcs)	ePEG (4 pcs)	.9K4 (4 pcs)	75L (2 pcs)	D3C (2 pcs)

2DProts: Integration of ligands

OMPF Porin PDB ID 2zfg, domain A00

Porin, Family 2.40.160.10

•SO4 (141 pcs) •OLC (114 pcs)	•CA (34 pcs) •D12 (27 pcs)	•PO4 (17 pcs) •HEX (16 pcs)	•PEG (13 pcs) •BOG (12 pcs)	•SCN (9 pcs) •EDO (8 pcs)	OES (5 pcs)	HP6 (3 pcs)	0JM (2 pcs)	
 C8E (472 pcs) LDA (263 pcs) 	 FTT (40 pcs) BR (36 pcs) 	 MG (22 pcs) RB (18 pcs) 	DAO (15 pcs)MYR (14 pcs)	 MC3 (11 pcs) CL (9 pcs) 	 TAM (6 pcs) D10 (6 pcs) 	PGV (4 pcs)	 TLA (2 pcs) NO3 (2 pcs) 	

AA.

2DProts: 2D diagrams for proteins

Pseudomonas aeruginosa lectin II PDB ID 1gzt

Hemoglobine PDB ID 1v4w

AlphaFold Protein Structure Data × +							>	
← C බ ⊡ https://alphafold.ebi.a	c.uk			A	C. Co	G 🗘	순 🕀 🔋	
# E	MBL-EBI home	🔌 Services	🕅 Research	🎄 Trainir	ng 🚺 Ab	oout us 🏻 🛛	EMBL-EBI	
AlphaFold Protein Structure Database				Home	About	FAQs	<u>Downloads</u>	
AlphaFold								
Protei	n Str	uct	ure	Da	tal	bas	se	
Developed by DeepMind and EMBL-EBI								
Search for protein, gene, U	niProt accessio	on or organis	sm		В	ETA	Search	
Examples: Free fatty acid recepto	r 2 At1g58602	2 Q5VSL9	E. coli Help	: AlphaFo	old DB searc	h help		
Feedback on structure: Contact	DeepMind	to desit						

Structures from AlphaFoldDB

E. coli PapC protein, C-terminal domain Family 2.60.40.2070

Acknowledgement

Ivana Hutařová Vařeková, Jan Hutař, Adam Midlik, Karel Berka, Aliaksei Charesneu, Eva Hladká

ELIXIR and ELIXIR CZ

CATH, EBI: Ian Sillitoe, Christine A Orengo

EMBL-EBI, PDBe: Dr. Sameer Velankar

Thank you for your attention

