Electrochemical Methods

MCHV C5060

Libuše Trnková

litrn@seznam.cz

Introduction

From Potentiometry (equilibrium) to Polarography and Voltammetry (dynamics)

Outline

Reduction and Oxidation, Redox Potentials, Overpotential, Electrode system, Cells, Reversibility and Irreversibility) Electrochemical Methods (potentiostatic techniques) (Voltammetry-CV, LSV, AC, NPV, DPV, SWV, Coulometry) Fundamentals and Application Basic Equations, Double Layer,

Overpotential

Hyphenated Methods (with electroanalysis)

(EIS - Electrochemical impedance spectra, HPLC with ED
 SE – Spectroelectrochemistry, QCMB - Quarz Crystal
 Microbalance, AFM – Atomic Force Microscopy)

Introduction

Books and Monograph Series

- 1. A. J. Bard, Electroanalytical Chemistry, Marcel Dekker, N.Y., 1970
- 2. J. Dvořák, J. Koryta: Elektrochemie, Academia, Praha, 1975
- 3. J. Zýka et al.: Analytická příručka, 3rd ed. SNTL, Praha, 1979
- 4. J. Koryta: Iontově selektivní elektrody, Academia, Praha, 1984
- 5. J. Wang: Analytical Electrochemistry, VCH Publishers, N.Y., 1984, 1994

6. Ch.M.A.Brett, A.M.O.Brett: Electrochemistry, Oxford, 1993

- 7. P. Klouda: Moderní analytické metody, P.K., Ostrava, 1994
- 8. J.O'M. Bockris, A.K.M.Reddy: Modern Electrochemistry 1,2A,2B, Plenum Press, N.Y. 1998
- 9. K. Markušová: Elektrochemické metódy, PF UPJŠ, Košice, 2003
- **10. J. Barek, K. Štulík, F. Opekar: Elektroanalytická chemie, Uč. Texty UK, 2005 11. F. Scholtz: Electroanalytical methods, Spriner, Berlin/Heidelberg,2002.**

Distribution of EAM

based on electrode processes $Ox + ne \Leftrightarrow Red$

based on electrical properties of analyte solutions

current is very low equilibrium electrochemistry (potentiometry) current is non-zero dynamic electrochemistry conductivity conductometry capacitance dielectrometry

the analyte concentration practically does not change by electrolysis voltammetry (polarography) amperometry the analyte is converted qualitatively by electrolysis

coulometry; electrogravimetry,

Introduction

Some Terms - Potentiometry

- Galvanic cell
- Electrolytic cell $E_{redox} = E_{redox}^0 - \frac{RT}{zF} \ln Q$

- Oxidation
- Half Reactions
- Redox Couple
- > Anode
- ➤ Cathode
- Standard Electrode Potential

electrochemical potential; thermodynamic functions ($\Delta_r G \quad \Delta_r S \quad \Delta_r H$) activity; activity coefficients, product of solubility, solubility Ion selective electrodes, potentiometric titrations

Nernst equation equilibrium

equilibrium constant

$$\frac{ln K}{RT} = \frac{zFE_{redox}^0}{RT}$$

$$Ox + ze^{-} = Red$$

$$T_{redox} = E_{redox}^0 + \frac{RT}{zF} ln \frac{a_{Ox}}{a_{Red}}$$

Electrochemical cells

galvanic vs. electrolytic

ELECTROCHEMICAL CELLS

After Atkins, General Chemistry, 2nd edition

Potentiometry – sample

 $Ag^{+} / Ag \qquad \text{In aqueous solution of NH}_{3}$ $Ag^{+} + e \rightleftharpoons Ag \qquad Ag^{+} + 2NH_{3} \rightleftharpoons Ag(NH_{3})_{2}^{+}$ $K_{f} = \frac{\left[Ag(NH_{3})_{2}^{+}\right]}{\left[Ag^{+}\right]\left[NH_{3}\right]^{2}} = 6.10^{8} \qquad \text{equilibrium constant}$

Nernst equation

$$E_{Ag} = E_{Ag^+/Ag}^0 + 0.059 \log\left[Ag^+\right]$$

$$E_{Ag} = E_{Ag^{+}/Ag}^{0} + 0.059 \log \frac{1}{K_{f} [NH_{3}]^{2}} + 0.059 \log [Ag (NH_{3})_{2}^{+}]$$

The potential shift due to the complex agent

The determination of.

(concentration or activity)

- the constant complexity
- \triangleright NH₃, organic amines, other ligands

Redox potentials

... to understand and predict the electrochemistry of the chemical reactions.

- Standard electrode potential (E^o or E^o)
 relative to a standard hydrogen electrode (SHE) with E^o = 0V (a = 1)
- Normal redox potential (E_{normal} or E_n)
 relative to a normal hydrogen electrode (NHE potential of a Pt electrode in 1 M acid solution, not a_H+=1 (1,18M)
- Absolute redox potential (E_{abs}) $E_{abs}^{M} = E_{SHE}^{M} + (4.44 \pm 0.02) V$ - is the difference in electronic energy between a point inside the metal electrode (Fermi level) and a point outside the electrolyte (an electron at rest in a vacuum). The absolute electrode potential of SHE = 4.44 ± 0.02 V at 25°C
- **Formal redox potential** $(E^{o'} \text{ or } E^{f})$ Ox + ze⁻= Red

$$E = E^{0} - \frac{0.05916}{z} \log \frac{[Red][\gamma_{red}]}{[Ox][\gamma_{Ox}]} = E^{0} - \frac{0.05916}{z} \log \frac{[\gamma_{red}]}{[\gamma_{Ox}]} - \frac{0.05916}{z} \log \frac{[Red]}{[Ox]}$$

ne effect of pH and ionic strength $E^{o'}$

POLAROGRAPHY/ VOLTAMMETRY Dynamic electrochemistry

- Linear Sweep Voltammetry (LSV)
- Cyclic Voltammetry (CV)
- Normal Pulse Polarography/Voltammetry(NPP/NPV)
- Differential Pulse Polarography/Voltammetry(DPP/ DPV)
- Square Wave Voltammetry (SWV)
- Alternating Current (AC) Polarography /Voltammetry
- Elimination Polarography (EP)
- Elimination Voltammetry with Linear Scan(EVLS)

Red-Ox in electrochemistry

- continuous selection of potentials (selectivity in the generation of intermediates / products
- continuous change of potential (order of electron transfer)
- > acquisition of thermodynamic data (potentials or energy, ox., red., E_{1ox} E_{1red})
- different rate of potential changes or their modulation in real time reversibility, kinetics, precursor, parallel and subsequent reactions, mechanism

new dimension – a newest and most exciting part of electrochemistry

Electrode kinetics – dynamics in EAM

the electrode acts as an electron source and is termed a cathode

Electrode kinetics – dynamics in EAM

the electrode acts as an electron sink and is termed an anode

Historical polarograms

Polarography

Jaroslav Heyrovský

History

The Nobel Prize in Chemistry 1959 "for his discovery and development of the polarographic methods of analysis"

was an inventor of the polarographic method, <u>father of</u> <u>electroanalytical chemistry</u>. His contribution to electroanalytical chemistry can not be overestimated. All voltammetry methods used now in electroanalytical chemistry originate from polarography developed by him.

1890-1967

J. Heyrovský + M. Shikata (1924)

Instrumentation, common techniques

Advantage of three-electrode set !

Instrumentation, common techniques

EcoTribo Polarograph Polaro Sensors - Eco Trend Prague, Czech Republic

Instrumentation, common techniques

Electrochemical analyzer AUTOLAB

Autolab Ecochemie Utrecht The Netherlands VA-Stand 663 Metrohm Zurich Switzerland

Mercury electrode

Dropping Mercury Electrode - DME

Static Mercury Drop Electrode - SMDE

Mercury electrodes (DME, SMDE, HMDE)

Dropping Mercury Electrode - DME

Static Mercury Drop Electrode - SMDE

Hanging Mercury Drop Electrode - HMDE

- its liquid state at ambient temperature, renewable surface
- bigh purity material availability
- bigh conductivity
- bigh surface tension
- bigh overvoltage potential for hydrogen
- bydrophobic surface
- Hg(I) ions form sparingly soluble salts with many anions
- inertness chemically at low potentials (because of its)
- Formation of amalgams with numerous metals (stripping)
- Microelectrodes (Hg drop diameter smaller than a millimeter)
- reduction and oxidation of many simple and complex ions speciation Ce(IV) + Ce(III), Cr(III)+Cr(II),Cr(IV)+Cr(III), Eu(III)+Eu(II),Fe(III)+Fe(II),Mo(VI)+Mo(V), Sn(IV)+Sn(II),Ti(IV)+Ti(III).....
- reduction and oxidation of numerous organic substances mechanism azo, carbonyl, sulphide nitro, quinone, heteroaromatic compounds

Direct Current (DC) polarography Half-wave potential, limited diffusion current

$Mn^+ + ne^- + Hg = M(Hg) amalgam$

- a) ¹/₂ wave potential (E_{1/2}) characteristic of Mⁿ⁺ (E)
 b) height of either average current maxima (i avg)
 - or top current max (i max) is ~ analyte concentration

c) i max is governed by: rate of growth of DME > drop time (t, sec) rate of mercury flow (m, mg/s) diffusion coefficient of analyte (D, cm²/s) number of electrons in process (z) analyte concentration (c, mol/ml) $\begin{array}{l} \textbf{Ilkovič equations} \\ (i_{d})_{max} = 0.706 \ z \ D^{1/2} \ m^{2/3} \ t^{1/6} \ c \\ (i_{d})_{avg} = 0.607 \ z \ D^{1/2} \ m^{2/3} \ t^{1/6} \ c \end{array}$

Dionýz Ilkovič 1907 -1980 Slovensko

Electrode materials

Carbon electrodes

- graphite of spectral quality
- glassy carbon (<u>GC</u>) or vitreous carbon (VC)
- graphite powder with liquid or solid binders
- carbon paste electrode
- carbon fibers, highly oriented pyrolytic graphite HOPG (basal hexagonal and edge one, at the edge plane the electrode processes are usually much faster)
- paraffin impreganted graphite electrode (PIGE)

• Optically transparent electrodes (spectroelectrochemistry) can be made by evaporating 10-100nm thick layers of Pt, Au, SnO₂, TiO₂, Ag, Cu, Hg, C on glass or quartz substrates, grids

• metal, metal oxide, various forms of oligomers, polymers

Pt, Au Ag (Rh, Pd, Ge, Ga, Pb)

- WE has to be tested before an analyte is added
- oligomers and polymers can spoil the electrode surface (!!!)

Electrode materials

Chemically modified electrodes

preliminary step or in situ

it is difficult to give a definition of ChME

modified by:

- adsorption (quinhydron, trioctylphosphine oxide, PAA oxime on GC)
- chemical reaction (substituted silanes, metal porphyrins on CE)
- formation of polymer film (Nafion containing dicyclohexyl-18crown-6ether, polypyrrole-N-carbodithionate)
- **preconcentration** of analytes by complex-formation reactions ion exchange or ion extraction

adsorptive accumulation (AdTS technique)

 electrocatalysis – attached the ET mediators which accelerate electrode reactions. The catalyst is regenerated by the fast and reversible electrode reaction, it is better to incorporate catalyst into a polymer or copolymer film.

Potential window

Instrumentation, common techniques

Potential window

for different electrodes and supporting electrolyte

Platinum – Pt Carbon – C Gold - Au Diamond - BDDE

Direct Current (DC) polarography

Linear sweep voltammetry (LSV)

Voltammetry Cyclic (CV) Linear sweep (LSV)

I /A 1E-5

const. - according to the dimension of parameters, including also F, D - the diffusion coeficient, A - the electrode surface

Cyclic and linear sweep voltammetry

- heterogenous kinetics (△G[#]~activation in electron transfer ~ Arrhenius ~ exp. function)
- I-E curves (exp. dependence)

activation overpotential $\eta = E_{polarization} - E_{equilibrium}$

$$j = j_0 \left\{ exp\left[\frac{(1-\alpha)zF\eta}{RT}\right] - exp\left[-\frac{\alpha zF\eta}{RT}\right] \right\}$$

Butler- Volmer equation for electrode process, where rds is charge transfer

j - current density, j_0 - exchange current density, α - charge transfer coefficient

 $diffusion \ overpotential$ $J = -D \frac{dc_{electrode}}{dx}$

I-E curves under both overpotential
 fast ET~ Nernst equation J- flux of n

J- flux of matter, D -diffusion coefficient

Direct Current (DC) polarography

Direct Current (DC) polarography

Diffusion overpotential – polarography/voltammetry

General Uses of Voltammetric Techniques

- Determination of org.and inorg.compounds in aqueous and nonaq.solutions
- Study of structures of organic and inorganic compounds
- Determination adsorption processes on surfaces
- Determination electron transfer and reaction mechanisms
- Measurement of kinetic rates and constants
- Determination of thermodynamic properties of solvated species
- Fundamental studies of oxidation and reduction processes in various media
- Determination of complexation and coordination values
- Determination of equilibrium protonation constants
- Electrochemical sensors

Common Applications

- Quantitative determination of pharmaceutical compounds
- Determination of metal ion concentrations in water to sub–parts-per-billion levels
- Determination of redox potentials
- Detection of eluted analytes in HPLC and flow injection analysis
- Determination of number of electrons in redox reactions
- Kinetic and mechanistic studies of reactions

Analytical applications

Mechanistic study (example)

Reduction of nitro- compounds

geminální <mark>diamin</mark>

 H_2N

 H_2N

NO₂

TNT trinitrotoluen

NO₂

HN

 H_2N

RDX Research Department Formula X 1,3,5-trinitroperhydro-1,3,5-triazine

nitroglycerin

propan-1,2,3-triyl-trinitrát

Voltammetric and spectral experiment

Mechanistic study - reduction of FOX-7

J Phys Org Chem. 2020;e4046. https://doi.org/10.1002/poc.4046

 electrochemistry electroactive groups)
 electronics(push-pull)
 structure (mesomeric forms, protonation/ deprotonation forms, tautomerism, changing geometry, and planarity)

MS

NO2

m/z 105

-(OH)*

- (HCNO₂)

NCO m/z 42

- (NO₂)

Brdička reaction

Heyrovsks's second assistant, Dr. Rudolf Brdicka, discovered a sensitive catalytic hydrogen-evolution reaction of proteins: in buffer solutions of pH about 9, containing ions of cobalt, proteins yield a prominent catalytic "double-wave"; this polarographic reaction was used in many countries over several decades as a diagnostic tool in treatment of cancer

Polarographic "Brdicka reaction" of blood sera of different patients with following diagnoses: 1) status febrilis 2) tumor hepatis susp 3) ca. ventriculi susp 4) normal serum 5) cirrhosis hepatic 6) atherosclerosis.

Cyclic Voltammetry

Applications – mechanism of the electrode process

How do currents flow through electrodes?

Steady state of spherical diffusion.

 $\frac{zFADc_{\infty}}{2} = 2\pi zFr_0Dc_{\infty}$ $I_d =$ r_0

Microelectrodes

Fast Cyclic Voltammetry (FCV)

microelectrodes

Biogenic amine levels are detected by rapidly cycling a voltage across <u>an implanted carbon</u> <u>fiber sensor</u> and measuring the resultant current. Our systems can measure spontaneous subsecond <u>neurotransmitter release</u> events while conducting detailed behavioral studies. Both the wireless and tethered systems sweep from <u>250 to 400 V/s</u> in a user-selectable range spanning -1.1 to +1.3 V. All systems have built-in support for controlling an external stimulus.

3,4-dihydroxyphenethylamine HO HO

Important roles in the brain and body Neurotransmiter Brain dopamine pathways (neuromodulatory) are involved in motor control and controlling the release of various hormones.

Applications – kinetics

ET

Heterogeneous rate constant k_h and k_h^o

Dependence on parameters (E, solvent, electrode, pH, I, adsorption...)

and	Direct Current (DC) Voltammetry				
	Randles-Ševčík equation				
$I_p = 2.686 * 10^5 z^{3/2} A D^{1/2} v^{1/2} c$					
peak height $I_p(A) \land (cm^2), D(cm^2.s^{-1}), v(V.s^{-1}),$ c (in solution) (mol.cm^{-3})diffusion c				iffusion control	
or Delahay equation					
	current $I_p = 2.686 * 10^5 (\alpha z)^{3/2} AD^{1/2} v^{1/2} c$				
	current density	$i_p = \frac{I_p}{A} or j_p =$	$\frac{I_p}{A}$		
	Calibrati	on redox couples:	$[Fe(CN)_6]^{3-/4-}$	dopamine	
	D ($cm^2.s^2$	¹) (1°C, i.e., 1.7%)	$[Ru(NH_3)_6]^{2+/3+}$	ferrocene	

Capacity (charging) current *I*_c

- the electric double layer charging (as a capacitance)
- $I_{capacity}(I_c)$ the connection with surface tension (important
- E_{pzc} zero charge potential: the charges are balanced at the interface (electrode/electrolyte)
 - each Hg drop is recharged
 - $I_c = f(E)$ is not linear and its time dependence:

Elimination of *I_c*

- 1) SMDE electronically controlled mercury drop; sampled technique (tast methods vzorkovací)
- 2) Application of pulse methods (non stationary methods)
- 3) AC voltammetry (phase shift between I_c and I_f
- 4) Elimination methods (software approaches)

the measured quantity is a function of time

$$I_c = \frac{E}{R_s} exp\left(-\frac{t}{R_s C_{dl}}\right)$$

Pozn.: tast - vzorkovací

Staircase technique, pulse techniques

Pulse Polarography (Voltammetry)

Normal pulse (NPP, NPV)

Differential pulse (DPP, DPV)

Pulse and square wave voltammetry

Perturbation by pulses

(a) Potential sequences (E-t curves).

(b) Potential sequence on one drop (\blacksquare tast).

(c) Current-potential curves for 1 mM Zn^{2+} in 1 M KNO₃.

DC: $\tau = 2 \text{ s}$; **NP:** $\tau = 2 \text{ s}$, $t_p = 5 \text{ ms}$; **DP:** $\tau = 2 \text{ s}$, $t_p = 5 \text{ ms}$; $\Delta E_p = 20 \text{ mV}$; **SW:** $\Delta E_p = 20 \text{ mV}$, f = 100 Hz.

DPV with stripping

the accumulation of metals (here is cathodic)

The example above shows the simultaneous determination of Zn, Cd, Pb and Cu using standard addition

Square Wave Voltammetry (SWV)

Ramaley&Krause and Osteryoung&O'Dea

Alternating Current (AC) Voltammetry

- the application of a sinusodially oscillating voltage; alternating potential usually has a frequency of 50-200 Hz and 5-50 mV amplitude
- the AC signal causes a perturbation in the surface concentration
- an electrochemical process, mass transport, chemical and adsorption steps and electron transfer
- electric double layer EDL
- adsorption (nucleation) studies, study of surface active compounds (PAL)

the suppression of a capacity current

- 1) <u>phase sensitive AC current regulation (the faradaic current component is phase shifted by</u> $\pi/4$ compared to the input potential, the capacity current component by $\pi/2$
- 2) <u>using the second harmonic current component (the frequency 2f)</u>

Alternating Current (AC) Voltammetry

Electrochemical impedance spectroscopy

corrosion EIS electrodeposition, electrodissolution, passivity SAM diffusion of ions across membranes semiconductor interfaces

The fundamental approach of all impedance methods is to apply a small amplitude sinusoidal excitation signal

Electrochemical impedance spectroscopy EIS Principles of EIS measurements

Taylor series expansion for the current is given by

$$\Delta I = \left(\frac{dI}{dE}\right)_{E_{0,I_0}} \Delta E + \frac{1}{2} \left(\frac{d^2 I}{dE^2}\right)_{E_{0,I_0}} \Delta E^2 + \dots$$

If the magnitude of the perturbing signal ΔE is small, then the higher order terms can be assumed to be negligible. The impedance of the system can then be calculated using Ohm's law:

$$Z(\omega) = \frac{\Delta E(\omega)}{\Delta I(\omega)}$$

 $Z(\omega)$ is impedance = f(ω)

frequency range of 100kHz – 0.1Hz

Electrochemical impedance spectroscopy EIS

Z

$$\frac{1}{C} = \frac{1}{R_{ct}} + \frac{1}{1/j\omega C_{dl}} = \frac{1}{R_{ct}} + j\omega C_{dl}$$

$$Z = \frac{1}{R_{ct}} + \frac{1}{1/j\omega C_{dl}} = \frac{1}{R_{ct}} + j\omega C_{dl}$$

$$Z = \frac{R_{e}}{1+j\omega C_{dl}R_{ct}}$$

$$Z = \frac{R_{e}}{1+j\omega C_{dl}R_{ct}}$$

$$Z_{real} = \frac{R_{e}}{1+\omega^{2}C_{dl}^{2}R_{ct}^{2}}$$

$$Z_{im} = \frac{R_{ct}^{2}C_{dl}\omega}{1+\omega^{2}C_{dl}^{2}R_{ct}^{2}}$$

$$[Z] = \sqrt{R^{2} + X^{2}}$$

$$[Z] = \sqrt{R^{2} + X^{2}}$$

$$[Z] = \sqrt{R^{2} + X^{2}}$$

$$C_{dl}$$

$$C_{d$$

Electrochemical impedance spectroscopy EIS EIS plots

In cartesian co-ordinates
$$Z(w) = Z_r(w) + jZ_j(w)$$

In polar co-ordinates $Z(\omega) = |Z(\omega)| e^{\phi \omega}$
magnitude of the
impedance
 $Z(t) = \frac{E(t)}{I(t)} = \frac{E_0 \cos(\omega t)}{I_0 \cos(\omega t - \phi)} = Z_0 \frac{\cos(\omega t)}{\cos(\omega t - \phi)}$

The plot of the imaginary part against the real part of impedance - **Nyquist plot.** The shape of the curve is important in making <u>qualitative interpretations of the data</u>. The disadvantage of the Nyquist representation is that one <u>loses the frequency</u> <u>dimension of the data</u>. One way of overcoming this problem is by labelling the frequencies on the curve. The absolute value of impedance and the phase shifts are plotted as a function of frequency in two different plots giving a **Bode plot.** The relationship between the two ways of representing the data is as follows:

Electrochemical impedance spectroscopy EIS

The different views on impedance data

The absolute value of Z and the phase shifts are plotted as a function of frequency in two different plots giving a **Bode plot**

The impedance data are the red points.

Their projection onto the $Z^{*}-Z^{*}$ plane is called the Nyquist plot The projection onto the $Z^{*}-v$ plane is called the Cole Cole diagram

Electrochemical impedance spectroscopy EIS

Nyquist and Bode plot

EIS: experiment parameters FRA parameters or settings $Z_{p} = R$

- 1. AC mode (single sine or multi sine)
- 2. perturbation (sine wave) amplitude (10 mV)
- 3. Open Circuit Potential (OCP)
- 4. three electrode set
- 5. frequency range (1MHz 0.1Hz)
- 6. frequency distribution (linearly, <u>logarithmically</u> or with a square root distribution) Output parameters from circuit models

Electrochemical impedance spectroscopy EIS

equivalent circuit models

Model 2

A resistance, a capacitance and an inductance in series

Model 2 can be used to model the response of a supercapacitor.

Bata presentation - O X File View Copy Pht Analysis Ecit data Windleys - E X 2.0 1.8 1.5 1.3 1.0 0,8 0.5 0.3 -0.3 03 0.5 0.8 1.0 Z' / ohm The impedance $\mathbf{Z} = \frac{\mathbf{R}}{\mathbf{1} + \mathbf{C}^2 \boldsymbol{\omega}^2 \mathbf{R}^2} - \mathbf{i} \cdot \frac{\mathbf{R}^2 \boldsymbol{\omega} \mathbf{C}}{\mathbf{1} + \mathbf{C}^2 \boldsymbol{\omega}^2 \mathbf{R}}$ of a parallel combination

Model 3

A resistance and a capacitance in parallel (Randles circuit)

The Randles circuit is one of the simplest and most common cell models. It includes a solution resistance, a double layer capacitor or a CPE and a polarization resistance. It is used to model corrosion processes and is often the starting point for other more complex models.

Model 1

A resistance and a capacitance in series

R_Ω C →√√→

Model 1 can be used, for example, to model a metal with an undamaged high impedance coating.

Electrochemical impedance spectroscopy EIS

equivalent circuit models

Model 4

Mixed kinetic and diffusion control

Model 4 can be used to describe electrode processes when both kinetics and diffusion are important.

Model 5

Two Randles circuits in series

Model 5 can be used, for example, to model the response of batteries.

Data procession 3 O X ite View Copy Plot Analysis Ecit data Windli Z^{*} verso Z . D × piece) 4.0 3.5 3.0 2.5 10/ 2.0 Ŀ, 1.5 1.0 0.5 0.5 1.0 1.5 2.0 2.5 3.0 3.6 4.0 Z' / ohm

e.g., porous electrodes

Model 6

A complex circuit

Model 6 can be used, for example, to describe the impedance of an organic coating on a metal substrate in contact with an electrolyte.

Hyphenated methods (HEM)

Complementary or Related Techniques in-situ

Other electroanalytical techniques may provide additional or preliminary information

- Spectroelectrochemistry SE: Simultaneous use of spectroscopic methods can identify species undergoing reaction, *in-situ study*.
- EQCMB (EQCNB) with CV in situ the study of layers on electrode surfaces together with cyclic voltammetry
- HPLC ED Liquid chromatography is often used to separate individual analytes before analysis.
- **EC AFM** *in situ* the study of layers on electrode surfaces by means of microscopy.

Spectroelectrochemistry

an experimental method that combines an electrochemical measurement coupled to an: *in situ* spectroscopical measurement (UV-Vis, IR, ESR, NMR) *ex situ* spectroscopical measurement (LEED, AES, XPS, AFM)

Optically Transparent Thin Layer Electrochemical (OTTLE) Cell

Applications

- mechanism
- kinetics

$$\succ$$
 E⁰', z: log (A_{Ox}/A_{red}) = f(E)

- \rightarrow dA/dt = f(E)
- M selectivity in complex reactions

Spectroelectrochemistry

1/0 1/0

$$A_{Red} = \frac{2c_{Ox}\varepsilon_{Red}D_{Ox}^{1/2}t^{1/2}}{\pi^{1/2}}$$

diffusion of Ox to the electrode the absorbance A_{red} as a function of time can be observed

$$A_{Ox} = \frac{2c_{Red}\varepsilon_{Ox}D_{Red}^{1/2}t^{1/2}}{\pi^{1/2}}$$

e - diffusion of **Red** to the electrode the absorbance A_{Ox} as a function of time can be observed $A = f(t^{1/2})$

Applications

kinetics and mechanism of electrode processes

formal redox potentials: E⁰', z: log (A_{Ox}/A_{red}) = f(E)
 evaluation as the derivative function: dA/dt = f(E) (greater accuracy)
 selectivity in complex reactions (not affected by capacity)

(EQCM)

Electrochemical Quartz Crystal Microbalance

- A mass variation (∠m) per unit area (A) by measuring the change in frequency (f) of a quartz crystal resonator
- The resonance is disturbed by the addition or removal of a small mass due to oxide growth/decay or film deposition at the surface of the acoustic resonator.

Quartz crystal the heart of the QCM

http://chinstruments.com

Piezoelectric effect (brothers Curie – 1880)

Some crystal could produce electricity when pressure is applied in certain crystalographic directions.

- > sensitivity $0.1 1 \text{ ng/cm}^2$
- → the calibration is necessary (C_f)

QCM or QCN

- Surface film mass
- Thickness
- Viscoelasticity
- Surface roughness
- Kinetics time dependence

Applications

- Thin film thickness
- Electrochemistry of interfacial processes at electrode surfaces
- Biotechnology
- Functionalized surface
 - Creation of selective surfaces
 - Lipid membranes
 - Polymer coatings
 - Reactive surfaces
 - Gas sensors
 - Immunosensors
- Thin film formation
- Surfactant research
 - Surfactant interactions with surfaces
 - Effectiveness of surfactants
- Drug research
- Liquid Plating & Etching
- In situ monitoring of lubricant and petroleum properties

Quartz crystal microbalance and nanobalance (QCM, QCN)

A mass variation (Δm) per unit area (A) by measuring the change in frequency (f) of a quartz crystal resonator Günter Sauerbrey (1959)

Sauerbrey equation

$$\Delta f = -\frac{2f_0^2}{A\sqrt{\rho_q \mu_q}} \Delta m$$

where f_0 is the resonant frequency (Hz), Δf is frequency change (Hz), Δm is mass change (g), A is piezoelectrically active crystal area (Area between electrodes in cm²), ρ_q is density of quartz (2.643 g/cm³) and μ_q is the shear modulus of quartz for AT-cut crystal (2.947x10¹¹ g·cm⁻¹·s⁻²). **Faraday:**

$$\Delta m = \frac{M}{zF}Q = \frac{M}{zF}It$$

$$\Delta f = -C_f \Delta m$$

- ➢ thin and rigid film
- \triangleright sensitivity 0.1-1 ng/cm²
- For vacuum or for gas phase (correction) (in water - decrease in $f \sim 750$ Hz)
- → the calibration is necessary (C_f)

polyvinyferrocene

HPLC with Electrochemical Detection (ECD)

- An extremely selective and sensitive detection technique that is applied in a number of analyses such as the <u>neurotransmitters (dopamine, serotonin and</u> noradrenalin – neurotransmiter analyzer). In combination with the proper electronics, ECD has an enormous linear dynamic range of more then 6 orders of magnitude (50 pmol/L - 100 µmol/L).
- Amperometric electrochemical detection (hydrodynamic mode)
- Interest: electrochemical detectors; electrochemical flow cells; electrodes (carbon); electroactive compounds

HPLC with Electrochemical Detection (ECD)

- \triangleright DC or pulse mode; S/N ratio; optimal E, (low E no signals, high E interference and noise)
- Difference between UV-Vis detection and ECD Lambert-Beer equation vs. Cottrell equation **Hydrodynamic** $current \simeq \frac{zFAc\sqrt{D}}{\sqrt{\pi t}}$

 $absorbance \simeq \varepsilon_{\lambda} d(c)$

> Aplications: 1) neurotransmitter (in blood and brain) 2) vitamins, carbohydrates (in food) 3) phenols (in environmental samples)

voltammogram

EC-AFM Electrochemical Atomic Field Microscopy

- combines atomic force microscopy (AFM) together with electrochemical measurements
- allows to perform *in-situ* AFM measurements in an electrochemical cell, in order to investigate the actual changes in the electrode surface morphology during electrochemical reactions (increasing interest, "gnome")
 - AFM apparatus is integrated with a three electrode electrochemical cell
- The AFM probe is monitored: surface changes as a function of time, when a potential is applied to the sample.
- Several electrochemical experiments (CV, DPV); E is applied to the tip, with respect to a suitable RE, to drive the process of interest at the tip and the current that flows is typically amplified by a current-to-voltage converter
- During the potential sweeping, the current flows through the sample and the morphology is monitored.

Electrochemical Atomic Field Microscopy

Scanning electrochemical microscopy: principles and applications to biophysical systems: Martin A Edwards et al 2006 Physiol. Meas. 27 R63 doi:10.1088/0967-3334/27/12/R01

EC-AFM

transport-limited current for the one-electron oxidation of ferrocyanide as a function of tip position under pressure); dentin - substrate

Confucius

Slyšel jsem a zapomněl jsem. Viděl jsem a pamatuji si. Dělal jsem a pochopil jsem. (Confucius)

I hear and I forget. I see and I remember. I do and I understand. (Confucius)

"Co slyším, to zapomenu. Co vidím, si pamatuji. Co si vyzkouším, tomu rozumím."

551 BC – 479 BC

Moral philosophy Social philosophy Ethics