Fluorescent labeling of molecules

Fluorescence methods in life sciences

Ctirad Hofr

Extrinsic fluorophores

Fluorescent dyes - are added to the studied sample and bind to it covalently. They bind to proteins and nucleic acids through the amino or thiol groups and side chains.

Fluorescent probes - bind to the studied sample non-covalently and after binding they change their fluorescence properties (e.g. intensity, position of emission maximum)

Possibility of fluorophore introducing

Covalent bond

it uses a chemical reaction of fluorophore derivative, during which a covalent bond with biomolecule is created

Non-covalent bond

fluorophore binds to a biomolecule through noncovalent (e.g. electrostatic) interactions

Fluorogenic reactions it uses a chemical reaction, during which a nonfluorescent precursor is changed to the fluorophore

They are formed by reaction of carboxylic acid and alcohol

Amide formation

Amides are formed by reaction of ester and amine

Reaction of esters for covalent labeling of molecules with NH₂ group

Reaction of carboxylic acid of dye Alexa 488 with NH₂ group of protein

How to add NH₂ group to DNA?

Aliphatic chain terminated with NH₂ group (amino-linker) is attached directly in the synthesis of oligonucleotide

DNA labeling through NH₂ group

Rhodamine Red[™]-X, succinimidyl ester

DNA with "amino-linker"

DNA labeled with Rhodaminem Red-X and OregonGreen

Other reactions for labeling through the amino group

Reaction of an isothiocyanate with a primary amine

 \mathbf{n}

$$R^{1}N=C=S + R^{2}NH_{2} \longrightarrow R^{1}NH - U^{2}-NHR^{2}$$

Isothiocyanate Thiourea

Reaction of sulfonic acid chloride with an amine

$$R^{1}SO_{2}CI + R^{2}NH_{2} \longrightarrow R^{1}SO_{2}-NHR^{2} + HCI$$

Sulfonyl chloride Sulfonamide

Connection through SH thiol group to form a thioether

R1 R2

- Thioether is similar to ester, except the O is replaced by S
- Thioether is formed by reaction of alkylating agents (e.g. halogen, maleimide) with thiols (contain SH group)

Reaction for covalent labeling of molecules with SH group

- Reaction of thiol group with maleimide to form a thioether
- The double bond of the maleimide reacts with SH thiol group to form a thioether

Other reactions for labeling of molecules with SH group

Disulfides

Symmetric disulfide

Mixed disulfide

"Click" chemistry

- Reaction catalyzed by Cu²⁺
- Azide-alkyne cyclization chemistry for the detection of A) proteins and B) sugars
- Reaction partners A) L-homopropargylglycine (HPG) and Alexa Fluor 488 azide and B) N-azidoacetylgalactosamine and Alexa Fluor 488 alkyne
- Partner on the left is introduced into proteins by de novo synthesis or posttranscriptional modifications

Other methods for labeling

- DNA can be covalently labeled without connection of NH₂ group in the synthesis
- It uses a reactivity of N7 guanine with platinum complexes
- Platinum complex contains a fluorescent dye which is covalently attached to guanine after the reaction

Separation of unbound dye

- Chromatography (protein) gel filtration
- Ultrafiltration
- Dialysis
- Precipitation
 (DNA)

Chemical labeling of proteins in vivo

A)Receptor-protein

 fluorescent dye or probe is attached
 to a molecule that has high affinity to
 receptor (avidin - biotin)

 B) Binding mediated by the enzyme

 fluorophore is attached to the substrate that can be covalently bound to a peptide "tag" of protein through another protein – enzym

• C) Probe does not emit fluorescence originally. After its binding to "tag", activation of fluorescence occurs (fluorogenic reaction)

Fluorogenic detection

In vivo labeling of β -gal by a fluorogenic probe with spectral change. The labeling is proposed to take place in two steps. The first step involves O-galactoside bond cleavage, which generates an active intermediate quinone methide. This intermediate is susceptible to nucleophilic attack by a nearby amino acid residue, which leads to covalent attachment of the FRET donor (D) to the enzyme and displacement of the acceptor (A).

DNA beacons

- Beacon in English means signal fire (no bacon)
- DNA beacon consists of a DNA molecule that is able to form a hairpin structure
- DNA has a fluorophore attached at one end and a quencher at the other end
- In hybridization with a complementary DNA, the quencher is displaced and fluorescence is emitted subsequently

Structure and properties "DNA beacon"

Increasing temperature leads to melting of hairpin structure, which results in increase of fluorescence intensity

Note: In case of Dabcyl, it was found an unexpected ability to quench a wide range of fluorophores regardless of degree of spectral overlap. The reason for this universal quenching is probably formation of non-fluorescent complex of Dabcyl with fluorophore. Anyway, it is an advantage because one quencher can be used for a wide range of fluorophores.

High sensitivity of DNA beacon

- In the case of hybridization with the DNA that differ only in one nucleotide, there is no increase in fluorescence signal
- High sensitivity and the ratio on/off signal in the presence/ in the absence of complementary DNA

Using of Dabcyl-Fluorescein couple for "DNA beacon" to monitor PCR

Number of DNA beacon molecules in the sample

Fluorescence intensity is directly proportional to the amount of amplified DNA

Hybridization in neighboring areas

- A preferred arrangement to reduce false positive results
- It use two hairpins
- One hairpin contains donor and the second contains acceptor of FRET
- Without target DNA, both fluorophores at the hairpin are quenched
- If the correct hybridization with target DNA occurs, FRET is observed
- If only one hairpin is hybridized, although the increase in intensity occurs, FRET is not increased
- This increases the specifity of the analysis

24

Detection of mRNA in living cells

- Optical and fluorescent display of kidney cells
- Increase in fluorescence
 intensity of "DNA Beacon"
 against the mRNA for
 β-actin demonstrated an
 increase in the
 concentration of mRNA
 and consequently an
 increase in production of
 β-actin

FISH (fluorescence in situ hybridization)

- DNA in the form of metaphase chromosomes is exposed to hybridization with fluorescently labeled DNA probe
- DNA probe has a sequence complementary to the target DNA on the chromosome
- After hybridization, a part containing the target DNA is localized based on
- ¹¹ fluorescence

Fluorescent deoxyribonucleotides for DNA synthesis of FISH probes

FISH examples

- Chromosomes hybridized with fluorescently labeled probes
- Chromosomal DNA was stained with DAPI nonspecifically

Radioactive sequencing

- Initial sequencing used a radioactively labeled primer
- The primer was extended by DNA polymerase according to sequenced chain
- To a mixture of normal nucleotides (dNTP) there was always added one type of dideoxynucleotide (ddNTP) that prevents further elongation of synthesized chain
- This generates a mixture of DNA chains with variable length that always ends by a given ddNTP
- Each reaction mixture for a given ddNTP was analyzed in one electrophoretic well (total in 4 wells)
- The sequence was determined from the position of band for the corresponding ddNTP on the gel

Scheme of DNA ddNTP

- Dideoxynucleotide triphosphate ddNTP
- At position 3' of ribose, OH group is replaced by an H, which prevents further DNA chain elongation

Fluorescent labels for sequencing

The labels are connected through an acetylene triple bond All labels are excited by one laser (488nm)

A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides JM Prober, GL Trainor, RJ Dam, FW Hobbs, CW Robertson, RJ Zagursky, AJ Cocuzza, MA Jensen, and K Baumeister *Science* 16 October 1987 238: 336-341

Fluorescent labeling accelerated the sequencing

- Using four fluorescent labels allowed to use only one lane in the gel for identification of all nucleotides => 4-fold acceleration
- Fluorescence scanning enabled to complete genome sequencing projects of whole organisms in a significantly shorter time

Human genome

DNA sequencing

• The most common sequencing primer is M13:

5'- gTA AAA CgA Cgg CCA gTg -3'

http://www.wiley.com/college/pratt/0471393878/stu dent/animations/dna_sequencing/index.html

Fluorescence sequencer

Literature

- Lakowicz J.R.: Principles of Fluorescence Spectroscopy. Third Edition, Springer + Business Media, New York, 2006.
- Fišar Z.: FLUORESCENČNÍ SPEKTROSKOPIE
 V NEUROVĚDÁCH
 http://www1.lf1.cuni.cz/~zfisar/fluorescence/Default.htm

Acknowledgment

Graphics from the book Principles of Fluorescence was for the purpose of this lecture kindly provided by Professor JR Lakowitzem.