

Oddělení funkční genomiky a proteomiky

Národní centrum pro výzkum biomolekul Přírodovědecká fakulta MU

Charakterizace proteinů hmotnostní spektrometrií

C7250 Část IV

Zbyněk Zdráhal

Výzkumná skupina Proteomika, CEITEC-MU Centrální laboratoř-Proteomika, CEITEC-MU Funkční genomika a proteomika, NCBR PřF zdrahal@sci.muni.cz

Charakterizace Modifikací Proteinů

Proč?

počet druhů PTMs počet PTMs > 400
 ≈ 90 000 (experimentálne identifikovaných)
 ≈ 230 000 (predikce) (SwissProt, per ≈ 530 000 proteinů)

G. A. Khoury et al., Sci. Rep. 1, 90; (2011); http://selene.princeton.edu/PTMCuration

...PTMs are known to act alone and in combination to regulate nearly all aspects of protein function...

...Post-translational modifications (PTMs) occur on nearly all proteins. Many domains within proteins are modified on multiple amino acid sidechains by diverse enzymes to create a myriad of possible protein species. How these combinations of PTMs lead to distinct biological outcomes is only beginning to be understood...

A. P. Lothrop, M. P. Torres, S. M. Fuchs, FEBS Letters. 587 (2013) 1247-1257

Protein p53

p53 exerts **irreplaceable anti-neoplastic functions** at homeostasis and thus is considered to be **'the guardian of the genome**'.

p53 is able to coordinate a regulatory network that supervises and responds to a variety of stress signals:

- DNA damage
- aberrant oncogenic activation
- ➢ telomere erosion
- ribosomal stress
- Ioss of cell-cell or cell-matrix adhesion
- hypoxia

Mutations of p53 or disruptions of p53 coordination,

to a lesser extent, can disturb the normal physiological balance, if genome disarrangement reaches a critical value **it leads to cancer**

SnapShot: Histone Modifications

He Huang,¹ Benjamin R. Sabari,² Benjamin A. Garcia,³ C. David Allis,² and Yingming Zhao¹ ¹Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA ²Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10021, USA ³Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA

se online version for for legend and references.

Možnosti MS při analýze modifikací

- Druh
- Lokalizace místa
- Obsazenost daného místa

MS

"screening"

(paralelní charakterizace tisíců PTM míst včetně dosud neznámých) detailní charakterizace jednotlivých modifikací

Western blot detekce druhu PTM lokalizace jednotlivé modifikace

Specifické barvení gelů

detekce druhu PTM bez možnosti lokalizace (fosfo, glyko proteiny)

Druhy modifikací:

Užitečný přehled modifikací: **DeltaMass -** <u>https://www.abrf.org/delta-mass</u>

"Chemické" modifikace:

záměrné modifikace (karbamidometylace Cys, derivatizace, kvantifikační značky aj.)

□ nechtěné modifikace (oxidace Met, deamidace $N \rightarrow D$ při zpracování vzorku, adukty farmak)

Common Posttranslational Modifications

C7250

Common Posttranslational Modifications

	Methylation	+14.0)269		For	mylation	+28.0104
Amines (K/N-terminus)	Acetylation	+42.0373		Lipoic acid			+188.3147
	Farnesylation	+204.3556		Myristoylation			+210.3598
	Biotinylation	+226.2994		Palmitoylation			+238.4136
	Stearoylation +266		4674 Geran		anyl	Igeranylation	+272.4741
Acids & amides	Pyroglutamic acid (Q)		-17.0306 Deamidation (C		amidation (Q/N	N) +0.9847	
(E/D/Q/N)	Carboxylation	+44.0098					
Hydroxyl grou (S/T/Y)	ps Phosphor	Phosphorylation		+79.9799		Sulphation	+80.0642
	Pentoses +132.1161 Deoxyhexe	Deoxyhexoses	+146.1430				
Carbohydrates (S/T/N)	Hexosamines		+161.1577		Hexoses		+162.1424
	N-acetylhexosamines		+203.1950		Sialic acid		+291.2579

Další detaily např: <u>http://themedicalbiochemistrypage.org/protein-modifications.php</u>

MS/MS fragmentace peptidů opakování

CID vs ETD

b, *y c*, *z*

C-terminus (z- serie)

N-terminus (c-serie)

MS Charakterizace mutací

Identifikace výměny AMK na aminokyselinové úrovni Protein ve dvou variantách v jednom spotu na 2-D gelu

Vstupní informace: Změna hmotnosti tryptického peptidu: –14 Da

DEEELQKENVKNTASLTGK**ITLSVTQSKPETGEVIGVFESIQPSDTDLGAK**VPKDVKIQG

MALDI-MSpotvrzení změny hmotnosti daného peptidu (2 proteázy)MALDI-PSDnejednoznačné výsledky

LC-MS/MS nalezena

. . .

. . .

. . .

. . .

nalezena mutace D/E v pozici 210

DEEELQKENVKNTASLTGKITLSVTQSKPETGEVIGVFESIQPSDTDLGAKVPKDVKIQG

MS/MS peptidu LSVTQSKPXTGEVIGVFES, MW 2006.0 (1992.0)

LC-MSMS

methylace, potvrzení D v pozici 210po derivatizaci výměna H za CH3 na karboxy skupinětj. $\Delta = 14$ Da/skupinu

Y₈ vtqskpx*tge*vig*

 $\Delta = 42 \text{ Da}$

 y_8 nederivm/z 787.2 pro D y_8 methylm/z 829.3 pro D

MS/MS peptidu VTQSKPXTGEVIG před a po methylaci

MS Charakterizace modifikací "chemické"

MALDI-MS spektrum digestů před a po modifikaci

(výřez spektra)

nemodifikovaný peptid

2060

162 Da

MALDI–MS spektrum – Oxidace Met

(výřez spektra)

a.i.

Výsledek identifikace proteinu (Mascot)

gi|15803837 Mass: 13532 Score: 487 Queries matched: 5
 50S ribosomal protein L14 [Escherichia coli O157:H7]

LC-MS/MS

C7250

MS/MS spektrum nemodifikovaného peptidu - MIQEQTMLNVADNSGAR C7250

 $b_9 - M_1 IQEQTM_7 LN$

 y_{10} – LNVADNSGAR y_{11} – M_7 LNVADNSGAR

Posuny v m/z vybraných fragmentů pro jednotlivé případy $M_{(ox)}$

	bez.	1 Ox	1 Ox	2 Ox
		M ₁	M ₇	oba
<i>y</i> ₁₀	0	0	0	0
<i>y</i> ₁₁	0	0	16	16
b ₉	0	16	16	32

LC-MSMS spectrum (výřez spektra) Potrzení modifikace na Cys ...VC*AR

Histon H3, lokalizace acetylace (in-vitro) MALDI-MS digestu (detail spektra)

C7250

Histon H3, lokalizace acetylace K(14) MALDI-ISD MS (detail spektra)

c₁₄

C7250

MS Charakterizace modifikací posttranslační

Fosforylace

Protein Phosphorylation is of Fundamental Importance in Biological Regulation cca 10-30% of all proteins are phosphorylated

♥ S, T, Y 1800 : 200 : 1 ???
♥ H ???

Whereas phosphorylation of serine, threonine or tyrosine results in the formation of a phosphoester linkage, phosphorylation of histidine residues occurs on nitrogen atoms, producing a phosphoramidate bond. Phosphohistidines have a large standard free energy of hydrolysis making them the most unstable of any known phosphoamino acid. Klumpp et al, Eur. J. Biochem. 269, 1067-1071 (2002)

Phosphorylation sites db:

http://www.phosphosite.org/homeAction.do http://phospho.elm.eu.org

Phospho.ELM version 9.0 (September 2010) contains 8,718 substrate proteins from different species covering 3,370 tyrosine, 31,754 serine and 7,449 threonine instances.

9 aminokyselin, které mohou být fosforylovány

serin (Ser) > threonin (Thr) > tyrosin (Tyr)

histidin (His)

kys. asparagová (Asp), kys. glutamová (Glu)

lysin (Lys), arginin (Arg), cystein (Cys)

C7250

Fosfoproteom - Potížista

potlačení signálu v MS

 pouze malá část z celkového množství proteinů je fosforylovaná
 (přednostní jenizges nemodifikougních poptidů)

(přednostní ionizace nemodifikovaných peptidů)

• většina signálních proteinů je v buňce v nízkých koncentracích

protein se může vyskytovat v různých fosfo formách

úprava vzorku obohacení

proteiny mohou být během zpracování defosforylovány fosfatázami přítomnými vezorku

Úprava vzorku

inhibitory fosfatáz (co nejdříve), FASP (lyze v SDT)

frakcionace fosfopeptidů (proteinů)

- TiO₂ (resp.jiné oxidy kovů, MOAC "metal oxide affinity chromatography")
- IMAC ("immobilized metal affinity chromatography")
- SCX resp. SAX or HILIC (,, ion exchange or hydrophilic interaction chromatography")

- imunoprecipitace pomocí specifické protilátky (zejména Y(fosfo)

I.L. Batalha, Trends in Biotechnology 30 (2), 100-110 (2012)

MS analýza

jiné typy fragmentací CID

ETD (ECD) electron transfer (capture) dissociation HCD higher-energy collision dissociation EThcD electron-transfer/higher-energy collision dissociation Frese at al., J. Proteome Res., 12, 1520–1525 (2013)

Specifické barvení fosforylovaných proteinů, 2D GE

phosphoproteins
(Pro-Q Diamond , blue)
proteins
(SYPRO Ruby, red).

C7250

alternativa **Metabolické značení** ³²P měření radioaktivity

immunoblotting

phosphatase treatment phosphoproteins display a basic shift in their pl after the dephosphorylation. comparison 2D gels

(https://www.lifetechnologies.com/order/catalog/product/P33300)

C7250

Mobility Shift Detection of Phosphorylated Proteins

SDS-PAGE using an Phos-tagTM complex with two manganese(II) ions Mn2+–Phos-tagTM[™]

E. Kinoshita et al., *Molecular* & *Cellular Proteomics*, *5*, 749-757 (2006)

Immobilized metal affinity chromatography (IMAC)

charging

specific binding

(Cu²⁺, Fe³⁺, Ga³⁺)

C7250

eluce

IMAC enrichment of -Casein phosphopeptides (1 pmol of tryptic digest)

Technical note - Millipore

Kasein (1 µg) po digesci trypsinem

C7250

Kasein (1 µg) po digesci trypsinem

Kasein (1 µg) po digesci trypsinem

MALDI-MS spektrum peptidu bez a s fosforylací

Potvrzení fosforylace pomocí alkalické fosfatázy

ESI-MS (IT) spektrum peptidu bez a s fosforylací positive mode

000

C7250

C7250

Fosforylace histonu H4 kinázou Aurora B (K. Šedová)

- fosforylace
- proteolytické štěpení trypsinem
- frakcionace fosfopeptidů na TiO₂
- LC-MS/MS analýza sken neutrální ztráty (ETD)

Schéma MS analýzy

LC-MS chromatogram

C7250

Identifikace peptidu databázovým prohledáváním MS/MS Ion Search (MASCOT)

C7250

 m/z
 Charge
 RT (min)
 Expect Mr

 559.0
 3+
 22.063
 1674.0

MASCOT

• gi|223582 Mass: 11230 Score: 74 Queries matched: 2 histone H4

Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	Rank	Peptide	
558.98	1673.93	1673.86	0.076	2	(23)	7.8	1	K.RKTVTAMDVVYALK.R + Phospho (ST)	CID
558.98	1673.93	1673.86	0.076	2	75	5e-05	1	K.RKTVTAMDVVYALK.R + Phospho (ST)	ETD

Modifications: Optional: Phospho (ST) Search Parameter: Charge=2+ and 3+, MS Tol.:0.500000 Da, MSMS Tol.:0.500000 Da, Trypsin Mascot 2.2.03, NCBInr NCBInr_20081101.fasta

Biotools	Score (Biotools)	Score (Mascot)
	520	23
RKTVTAMDVVYALK	518	22
ETD		
RKTVTAMDVVYALK	6149	75
RKTVTAMDVVYALK	774	47

RKTVTAMDVVYALK

na základě CID MS/MS dat nelze fosfoskupinu lokalizovat

RKTVTAMDVVYALK

C7250

na základě ETD MS/MS dat lze jednoznačně lokalizovat fosfoskupinu na T(3)

T(3) x T(5)

Enrichment method	Description	Advantage	Disadvantage	References
Immunoaffinity enrichment	Use of antibodies directed against pTyr, pSer, pThr, and more recently against the surrounding consensus sequences for pSer/pThr.	Highly specific.	Low efficiency, high cost, use of different antibodies for different phosphorylation motifs.	Stokes et al., 2012
Immobilized metal affinity chromatography (IMAC)	Negatively charged phosphate groups on the phosphorylated amino acids interact with positively charged metal ions such as Ni ²⁺ , Fe ³⁺ , Ga ³⁺ , Zr ⁴⁺ , and Ti ⁴⁺ that are chelated with silica or agarose through nitriloacetic acid or iminodiacetic acid.	Good for both phosphoproteins and phosphopeptides. When used with peptides, it can enrich mono- and multiple phosphorylated peptides.	Tends to bind strongly to monophosphorylated peptides, which makes it difficult for elution. Non-specific binding of acidic peptides can occur.	Fila and Honys, 2012
Metal oxide affinity chromatography (MOAC)	Similar to IMAC, the phosphate groups on the amino acids interact with positively charged metal oxides, e.g., titanium or zirconium that acts as anchoring molecules to trap phosphopeptides through the formation of multi-dentate bonds.	Good for both phosphoproteins and phosphopeptides. When used with peptides, it can enrich mono- and multiple phosphorylated peptides.	Tends to binds strongly to multiple phosphorylated peptides, which makes it difficult for elution. Nonspecific binding of acidic peptides can occur.	Gates et al., 2010
Phos-Tag chromatography,	Uses 1,3-bis[bis(pyridine-2- ylmethyl)amino]propan-2-olato dizinc(II) complex as a selective phosphate binding tag in aqueous solution at neutral pH.	Increased sensitivity due to complete deprotonation of phosphoproteins/ phosphopeptides at neutral pH. Elution at the physiological pH allow for protein activity and functional analysis.	Mainly used to confirm the phosphorylation state in relatively pure proteins, but not with complex mixtures.	Kinoshita et al., 2006
Prefractionation by strong cation exchange (SCX) and strong anion exchange (SAX)	In SCX, tryptic peptides often carry a charge of +2, except for phosphopetides with a net charge of +1, making them elute early in the chromatography. SAX retains phosphor-peptides, allowing separation based on the number of phosphorylated residues.	Used for fractionation of highly complex mixtures, it can be performed on-line with mass spectrometry.	Similar degree of unspecific binding as IMAC and MOAC.	Leitner et al., 2011
Hydrophilic interaction liquid chromatography (HILIC)	Phosphopeptides with polar phosphate groups are strongly retained on the HILIC stationary phase resulting in separation from non-phosphorylated species.	Good for both phosphoproteins and phosphopeptides. When used with peptides, it can enrich mono- and multiple phosphorylated peptides.	Similar degree of unspecific binding as IMAC and MOAC.	(Yang et al., 2013)
Electrostatic repulsion hydrophilic interaction chromatography (ERLIC)	ERLIC is a variation of HILIC using electrostatic repulsion as an additional phase to adjust selectivity by varying pH or organic solvents.	Good for both phosphoproteins and phosphopeptides. When used with peptides, it can enrich mono- and multiple phosphorylated peptides.	Similar degree of unspecific binding as IMAC and MOAC.	Gan et al., 2008
Hydroxyapatite chromatography	It takes advantage of the strong interaction between positively charged hydroxyapatite and phosphate ions.	Good for fractionating mono-, di-, tri-, and multi-phosphorylated peptides when using gradient of a phosphate buffer.	Developed with phosphoprotein standards, not tested with complex samples. Li et a.	Mamone et al., 2010 I., Front, Plan

TABLE 1 | Phosphopeptide/phosphotprotein enrichment methodologies.

Li et al., Front. Plant S<mark>ci., 6, 430 (2015)</mark>

Ubikvitinace

Ubiquitination is an enzymatic, protein post-translational modification (PTM) process in which the carboxylic acid of the terminal glycine from the **di-glycine motif** in the activated ubiquitin forms an amide bond to the epsilon amine of the lysine in the modified protein.

Protein ubiquitination regulates many cellular processes including transcription, endocytosis, cell cycle control, signal transduction, stress response, DNA repair as well as **proteasomal-mediated degradation**

S. Liu, Z.J. Chen, Cell Research (2011) 21:6-21

Ubikvitinace

(A) Homotypic and heterotypic Ub chains

The complex Ub code contains numerous variants of homotypic and heterotypic (mixed or branched) chains. Based on the eight possible linkages (M1, K6, K11, K27, K29, K33, K48, and K63) between two Ub moieties, **at least 92 different Ub chain types exist**.

Stolz A. et al., Trends in Cell Biology, 28 (1), 1-3 (2018)

Akutsu M. et al., J. Cell Sci., 129, 875-880 (2016)

C7250

ubikvitin – protein 8.5 kDa (76 AMK)

MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGK QLEDGRTLSDYNIQKESTLHLV LRLRGG

heterogenita forem

lokalizace modifikovaných AMK
 určení vazeb v polyubikvitinu

- • K

The most studied polyubiquitin chains - lysine48linked - target proteins for destruction

Strategie analýzy ubikvitinovaných míst

N.J. Denis, Proteomics 2007, 7, 868-874

Chybná identifikace ubikvitinace nebo K(91) je ubikvitinylován ???

BBAP monoubiquitylates histone **H4 at lysine 91** and selectively modulates the DNA damage response." Yan Q., Dutt S., Xu R., Graves K., Juszczynski P., Manis J.P., Shipp M.A. Mol. Cell 36:110-120 (2009)

Histon H4 (trypsin)

1	SGRGKGGKGL	GKGGAKR HR K	VLRDNIQGIT	KPAIRR LARR	GGVKRISGLI
51	YEETRGVLKV	FLENVIRDAV	TYTEHAKRKT	VTAMDVVYAL	KRQGRTLYGF
101	GG				

Mascot

79–100 658.6059 2630.3944 2630.4003 -2.23 0 **45** 0.0013 1 R.KTVTAMDVVYALKRQGRTLYGF.G + UBI_dT (K)

All matches to this query

Score	Mr(calc)	Delta	Sequence
	2630.4003	-0.0059	
	2630.4003	-0.0059	
0.3	2630.3792	0.0152	KSAPAPKKGSKKAVTKAQKKD

Chybná identifikace ubikvitinace nebo K(91) je ubikvitinylován ???

K(1) není ubikvitinylován

KTVTAMDVVYALKRQGRTLYGF

#	b	b++	b*	b* ⁺⁺	b ⁰	b ⁰⁺⁺	Seq.	у	y++	y*	y*++	y ⁰	y ⁰⁺⁺	#
1	129.1022	65.0548	112.0757	56.5415			K							22
2	230.1499	115.5786	213.1234	107.0653	212.1394	106.5733	Τ	2503.3126	1252.1599	2486.2860	1243.6467	2485.3020	1243.1547	21
3	329.2183	165.1128	312.1918	156.5995	311.2078	156.1075	V	2402.2649	1201.6361	2385.2384	1193.1228	2384.2543	1192.6308	20
4	430.2660	215.6366	413.2395	207.1234	412.2554	206.6314	T	2303.1965	1152.1019	2286.1700	1143.5886	2285.1859	1143.0966	19
5	501.3031	251.1552	484.2766	242.6419	483.2926	242.1499	A	2202.1488	1101.5780	2185.1223	1093.0648	2184.1383	1092.5728	18
6	632.3436	316.6754	615.3171	308.1622	614.3330	307.6702	M	2131.1117	10 <mark>66.0</mark> 595	2114.0852	1057.5462	2113.1011	1057.0542	17
7	747.3706	374.1889	730.3440	365.6756	729.3600	365.1836	D	2000.0712	1000.5392	1983.0447	992.0260	1982.0607	991.5340	16
8	846.4390	423.7231	829.4124	415.2098	828.4284	414.7178	V	1885.0443	943.0258	1868.0177	934.5125	1867.0337	934.0205	15
9	945.5074	473.2573	928.4808	464.7441	927.4968	464.2520	V	1785.9759	893.4916	1768.9493	884.9783	1767.9653	884.4863	14
10	1108.5707	554.7890	1091.5442	546.2757	1090.5601	545.7837	Y	1686.9075	843.9574	1669.8809	835.4441	1668.8969	834.9521	13
11	1179.6078	590.3075	1162.5813	581.7943	1161.5973	581.3023	Α	1523.8441	7 6 2.4257	1506.8176	753.9124	1505.8336	753.4204	12
12	1292.6919	646.8496	1275.6653	638.3363	1274.6813	637.8443	L	1452.8070	726.9071	1435.7805	718.3939	1434.7964	717.9019	11
13	1534.8298	767.9185	1517.8032	759.4053	1516.8192	758.9132	K	1339.7229	670.3651	1322.6964	661.8518	1321.7124	661.3598	10
14	1690.9309	845.9691	1673.9043	837.4558	1672.9203	836.9638	R	1097.5851	549.2962	1080.5585	540.7829	1079.5745	540.2909	9
15	1818.9895	909.9984	1801.9629	901.4851	1800.9789	900.9931	Q	941.4839	471.2456	924.4574	462.7323	923.4734	462.2403	8
16	1876.0109	938.5091	1858.9844	929.9958	1858.0004	929.5038	G	813.4254	407.2163	796.3988	398.7030	795.4148	398.2110	7
17	2032.1120	1016.5597	2015.0855	1008.0464	2014.1015	1007.5544	R	756.4039	378.7056	739.3774	370.1923	738.3933	369.7003	6
18	2133.1597	1067.0835	2116.1332	1058.5702	2115.1492	1058.0782	Т	600.3028	300.6550			582.2922	291.6498	5
19	2246.2438	1123.6255	2229.2172	1115.1123	2228.2332	1114.6202	L	499.2551	250.1312					4
20	2409.3071	1205.1572	2392.2806	1196.6439	2391.2965	1196.1519	Y	386.1710	193.5892					3
21	2466.3286	1233.6679	2449.3020	1225.1547	2448.3180	1224.6626	G	223.1077	112.0575					2
22							F	166.0863	83.5468					1

Nelze rozhodnout zda je ubi na K nebo GG na C-terminu

C7250

Charakterizace ubikvitinací Schéma experimentu pomocí imunoprecipitace

C7250

Ubikvitinace Obsazenost místa, semikvantifikace

poměr obsazenosti jednotlivých Ubi míst vzorek vs kontrola

četnost jednotlivých míst řetězení ubikvitinu vzorek vs kontrola

de Groot R. E.A. et al., Sci. Signal., 7 (317), ra26 (2014)

Charakterizace ubikvitinací

Schéma experimentu pomocí imunoprecipitace II

Charakterizace ubikvitinací

Schéma experimentu pomocí imunoprecipitace II

Numbers of ubiquitination sites and ubiquitinated proteins identified in the two cell lines (*n* = 3 independent biological replicates). Numbers on the top of bars indicate identified ubiquitination sites; numbers within bars indicate identified proteins.

Overlap of ubiquitination sites and ubiquitinated proteins between Hep2 and Jurkat cells.

Numbers indicate the number of identified ubiquitination sites (left) or proteins (right).

Nat. Struct. Mol. Biol., 25 (July), 631-640, (2018)

Ubiquitin-like proteins

Table 1. Ubl's and Their E1 and E2 in Human and Budding Yeast

	proteins in H. sapiens	proteins in S. cerevisiae				
family	Ubl	E1	E2	Ubl	E1	E2
SUMO	SUMO1, SUMO2, SUMO3, SUMO4 ^a	UBA2/SAE1	UBC9	Smt3	Uba2/Aos1	Ubc9
NEDD8	NEDD8	UBA3/NAE1	UBC12, UBE2F	Rub1	Uba3/Ula1	Ubc12
ATG8	LC3A, LC3B, LC3B2, LC3C, GABARAP, GABARAPL1, GATE-16 ^a	ATG7	ATG3	Atg8	Atg7	Atg3
ATG12	Atg12	ATG7	ATG10	Atg12	Atg7	Atg10
URM1	URM1	UBA4	-	Urm1	Uba4	-
UFM1	UFM1	UBA5	UFC1	-	_	-
FAT10	FAT10	UBA6	$UBE2Z^{b}$	-	-	_
ISG15	ISG15	UBA7	UBCH8 ^b	-	_	_

^aSUMO5 and GABARAPL3 were not included in this table as they are likely pseudogenes. ^bUBE2Z and UBCH8 can also work with ubiquitin.

890

DOI: 10.1021/acs.chemrev.6b00737 Chem. Rev. 2018, 118, 889–918

Glykosylace

one of the most common post-translational modifications of proteins in eukaryotic cells.

involved in a wide range of biological functions such as receptor binding, cell signaling, immune recognition, inflammation, and pathogenicity.

Základní typy glykanů:

N-linkedO-linked

- GPI anchors
- C-linked
- glykace

Variation in the degrees of saturation at available glycosylation sites results in heterogeneity in the mass and charge of glycoproteins

Signal Supression

N X S/T

N - linked

S/T

N-linked glycosylations

glycans are attached to the protein backbone via an amide bond to an asparagine during protein synthesis (in endoplasmic reticulum)

N-X-S(T) X nesmí být P subtypes:

- High-mannose
- Hybrid
- Complex

C7250

N-linked:High-mannose subtype

N-linked: Hybrid subtype

Gal β-D-Galactose

NeuNAc

 α -N-Acetylneuraminic acid (Sialic Acid)

N-linked: Complex subtype

O-linked glycosylations

glycans are linked via the hydroxyl group of serine or threonine

examples:

GPI (glycosylphosphatidylinositol) anchors anchors are linked via C-terminus, membrane bound

Charakterizace glykoproteinů

specifická detekce glykosylovaných proteinů
identifikace proteinů
určení glykosylačního místa
určení struktury glykanu

Specifická detekce glykosylovaných proteinů

Pro-Q Emerald 300 - glyko only

další techniky detekce: kolorimetrická detekce fluorescenční detekce

specifické obohacení: *afinitní chromatografie (lektinové matrice. m-Aminophenylboronic Acid)*

identifikace proteinu: *Peptide mapping* <u>MS/MS Ion search</u>

Sypro Ruby - all

Deglykosylace

chemická:

Hydrazinolysis

Hydrazine hydrolysis has been found to be effective in the complete release of unreduced O- and N-linked oligosaccharides.

Alkaline β-Elimination -

Trifluoromethanesulfonic Acid -

jen O-linked s vyjímkami destrukce glykanu

enzymatická: PNGase F N-linked, vše pryč, pokud ne PNGase A N-linked, vše pryč, pokud ne Endoglycosidase H N-linked, štípe až za prvním Endoglycosidase F1, F2, F3 N-linked, štípou specificky ke struktuře

O-Glycosidase O-linked. vše pryč

β-galactosidase

...

štípe před

Určení místa glykosylace, resp. struktury glykanů

- glykosylace "jen" na S nebo T (O-linked) NXS(T) (N-linked)
 lze vytipovat potencionální glyko místa určité strukturní typy u glykanů (high-mannose....)
- kombinace MS a MS/MS technik
- separace glykoproteinů resp. glykopeptidů
- vhodná deglykosylační strategie
- derivatizace glykanů

MALDI-MS spectrum of glycosylated and non-glycosylated protein size of glycan part

C7250

1D GE of protein before and after deglycosylation

confirmation of glycosylation

MALDI-MS spectrum of deglycosylated protein confirmation of glycosylation

MALDI-MS celých proteinů

MALDI-MS tryptických digestů

C7250

Detail spekter digestů proteinu před a po deglykosylaci

C7250

Detail spekter digestů proteinu před a po deglykosylaci

C7250

Shrnutí výsledků

tryptický peptid 2796 Da ...PHIF<u>DYS</u>GS..., kde D vzniká z N po deglykosylaci PNGasou A

původní sekvence je tedy ... PHIF<u>NYS</u>GS... (hmotnost 2795 Da)

Peptid potvrzen také LC-MS/MS analýzou (v glykosylovaném vzorku digestu nebyl nalezen)

Hmotnost glykanu 1170 Da odpovídá xylose+fucose+3*mannose+2*N-acetylglukosamin

Nebyl dále potvrzen MS/MS technikami

...missing parts have potential N-glycosylation sites...

MLRNVCPVLILLIIGATA LVMGVPR CELFLSG AYCDMETDGGGWTVFQRRGQFGNPVYYFYKKWA DYAHGFGDPAKEYWLGNNVLHALTSDKAMSLRIE K<u>NHS</u> ETTAEYSYKVASEEEYFKINVGGYIGSK GSDAFSTANGS AWYTSCHGSNLNGLNLNGEHPSYADGIEWSAR GGSTGLYYYSYPNVEMKVRDAHFISRVADGRAS

from lecture of Petr Man

C7250

... glycopeptide...

MS/MS from 1202.2 - - glycopeptide, type of glycan identified

C7250

MLRNVCPVLILLIIGATA LVMGVPRDCGELFLSGQNHSGVVNIYPYKDSLLPVS AYCDMETDGGGWTVFQRRGQFGNPVYYFYKKWA DYAHGFGDPAKEYWLGNNVLHALTSDKAMSLRIE K<u>NHSLETLTAEYSVFK</u>VASEEEYFKINVGGYIGSK GSDAFSIANGSMFTASDQDHDTYTNCAVEFKG AWYTSCHGSNLNGLNLNGEHPSYADGIEWSAR GGSTGLYYYSYPNVEMKVRDAHFISRVADGRAS

from lecture of Petr Man

C7250

Kombinace deglykosylačních enzymů

Postupná deglykosylace různými enzymy (MALDI-MS)

Fig. 2. MALDI-MS analysis of fraction T9 (A), after the digestion of fraction T9 with sialidase S (B), followed by β 1-4 galactosidase (C) and then by β 1-2-*N*-acetylglucosaminidase digestion (D). MALDI-MS analysis of fraction T9 after treatment with α 1-6-fucosidase and α -mannosidase (E).

L.P. Kotra et al. | Bioorganic Chemistry 30 (2002) 356-370

Glycan profiling and structural analysis of glycans

Lattová E. et al., J. Proteome Res., 15 (8), 2777-2786 (2016)

NSCLC - Bronchoalveolar Carcinoma

Large Cell Carcinoma

MALDI-TOF-MS spectra of N-glycans after desialylation

● Man; ○ Gal; ■ GlcNAc; ▼ Fuc

Glycoproteomics of stem cells

example of LC-MS/MS based global study

Figure 1 | Glycoproteomics. a, Glycoproteomic workflow combining proteomics platforms with a new algorithm for the identification of intact glycopeptides from complex biological samples. b, MS/MS raw data pre-processing by charge deconvolution and precursor mass correction allows the automated identification of glycopeptides, on the basis of low-abundant peptide fragment ions in the lower mass-range of glycopeptide MS/MS spectra (a.m.u., atomic mass unit). c, Coverage of experimentally identified glycoproteins (orange circle; Supplementary Table 10) among all predicted mouse glycoproteins (Uniprot, white) and the glycoproteins expressed (on the basis of RNAseq, grey) in mESC. d, Transcript abundance of all glycoproteins expressed (RNA-seq) in our mESC clone (grey), compared with the glycoproteome experimentally detected (orange). Data are representative of two independent mESC glycoproteomics experiments with similar results.

Stadlmann J. et al., Nature, 549, 538 (2017)

MSFragger-Glyco

example of software development

Polasky D. A. et al., Nat. Methods, 17, 1125 (2020)

