Lecture 5

Cryo-electron microscopy

Tibor Füzik

"The structural biology continuum"

nm

μm

mm

EITEC

How does it compare to other methods

X-ray crystallography

NMR

Cryo-EM

Nobel Prize in Chemistry 2017

The resolution revolution

beta-galactosidase; Veronica Falconieri, Sriram Subramaniam, National Cancer Institute

The resolution revolution

The Microscope

Titan KRIOS

- autoloader for 12 samples
- cooled to liquid N₂ temperature
- energy filter
- CCD, DED

How TEM compares to optical microscope

FITEC

TEM schematic

ACC1376

Electron sources - types

- Thermionic
- Field emission

Schottky

Cook B.; Ultramicroscopy; 2009

Tungsten filament

microtonano.com

snaggledworks.com

Electron sources - properties

Thermionic

- Tungsten filament
 - Low brightness
 - Inexpensive
- LaB₆ crystal
 - Higher brightness
 - Less energy spread
 - Lower lifetime

Field emission

- Schottky warm
 - High brightness
 - Lower lifetime
 - Higher energy spread ⊗
- Cold FEG
 - High brightness
 - Lower energy spread 🙂
 - Lower stability

	Electron Gun Properties				
Source	Brightness	<pre>Stability(%)</pre>	Size	Energy spread	Vacuum
W	3X10 ⁵	~1	50µm	3.0(eV)	10-5 (τ)
LaB ₆	3x10 ⁶	~2	5µm	1.5	10-6
C-FEG	10 ⁹	~5	5nm	0.3	10-10
T-FEG	10 ⁹	<1	20nm	0.7	10-9
Brightness hear current density per unit calid angle					

Brightness - beam current density per unit solid angle

Electron beam properties

- Beam coherence
- Wave-length: at 300 kV => ~2 pm = 0.002 nm = 0.02 Å
- Velocity: at 300 kV => 0.76c
- Magnetic momentum
- Can be focused
- Disadvantage: hi interaction rate (small penetration)

Electron beam deflectors

Electron beam deflectors

Principle of convex optical lenses

- Ray passing through optical axis remains unbent
- Rays passing through lens are bent that they focus (converge) in focal point

Principle of optical lenses

Principle of optical lenses

How electromagnetic lenses work

www.alamy.com

Electromagnetic lenses - properties

- Variable strength
- Hysteresis

B

• Non-homogenity of the coil current => magnetic field => aberrations

How to correct for aberrations

- Astigmatism
 - Defocus in one direction is different then in the other
 - Stigmator
 - Quadrupole magnetic field
 - Octapole stigmator (still quadrupole magnetic field)
- Higher order aberrations
 - Non-homogeneity of the magnetic field
 - High frequencies affected more
 - Cs corrector

Ceos-gmbh.de

Mathematic description of aberrations

Zernike polynomials

Frits Zernike

Nobel Prize 1953 (phase contrast microscopy)

TEC

Illumination system (Condenser system)

- Condenser lenses
 - 2 condenser system
 - C1 lens spot size
 - C2 lens beam size (diameter)
 - 3 condenser system
 - C2/C3 beam size (diameter)
- Condenser apertures
- Beam-shift

- Deflectors
- Goal for hi-res microscopy
 - Parallel illumination beam
 - Controlled dose/flux

C1 lens, C2 lens, C2 aperture

- C1 lens
 - Strength changed in steps
 - Controlled by "Spotsize"
 - Major impact on electron flux
- C2 lens
 - Strength change gradually
 - Controlled by "Intensity", "Brightness"
 - Controls the convergence of the beam
 - Converging beam higher electron flux than diverging
- Aperture
 - Cuts out part of the beam after C2
 - Reduces illuminated area but not the flux

A three-condenser system

- Hi-end microscopes
- Behind C2 aperture
- Parallel beam across wide range of beam size
- Precise setting of dose and beam size
- Easier setup for phase plate usage
- Calibrate the ratio between C2 and C3

Objective lens system

- Objective lens highest magnification 50x
 - Strength set by "Focus"
- Objective stigmator
 - Remove two-fold astigmatism
- Objective aperture
 - Remove electrons with high angle scattering angle
 - Improves contrast
 - Has influence on resolution (cut-off)
 - Has influence on astigmatism

Sample stage

- Moving in 3 dimensions (X, Y, Z)
 - Eucentric height
- Rotation (tilt)
 - Sample centered
 - goniometer
- Cooled at liquid nitrogen temp
- Stability crucial for hi-res
- Cryo-decontamination box

Projector system

- Intermediate lens and Projector lens
 - Intermediate magnification 10-20x
- Final magnification of the image
- Rotation free lenses
- Magnification modes
 - LowMag
 - SA

- EFTEM
- Image deflectors
 - Shifts the beam-shifted image back to detector

Stage-shift vs image-shift (beam-shift)

EITEC

Stage-shift vs beam-shift/image-shift

Stage-shift

- Mechanical
- Takes time to stabilize (~15 s)
- Large movements (+- grid surface)
- Small precision

Beam-shift/Image-shift

- Electro-magnetic
- Faster stabilization (~5 s)
- Small movements (~5 μm)
- High precision
- Introduces beam-tilt

Energy filter

- Elastic electron scattering
- Inelastic electron scattering
- In column (Omega filter)
- Post column

Energy filter – electromagnetic prism

In-column / post-column filter

EITEC

Detectors

- Fluorescent screen
 - Zinc sulfide
 - Robust
- Film
 - Silver reduced from silver halide
 - Linear response
 - Digitalization of films
 - No drift correction
- CCD charge couple device
- Direct electron detector

twitter.com/difluorine

CCD camera

- Convert e⁻ to light and detect by CCD
- Sensitive to cosmic rays
- Scattering between scintillator and fiber optics

Direct electron detector

- Directly detects electrons (no conversion to photons)
- Non-sensitive to cosmic rays
- Fast readout (movie mode)
- Back thinning reduce e⁻ backscattering
- Every pixel own readout electronics
- Linear (integrative) mode
- Counting mode

franklab.cpmc.columbia.edu

DQE - detective quantum efficiency

Direct electron detector

ThermoFisher – Falcon 4

ThermoFisher – Falcon 3

Vacuum system

- TEM requires high vacuum
- Rotary pump (low vacuum up to ~10⁻⁴Pa)
- Oil diffusion pump (high vacuum ~10⁻⁸Pa)
- Turbomolecular pump (high vacuum ~10⁻⁸Pa)
- IGP ion getter pumps (ultrahigh vacuum up to 10⁻⁹Pa)

Rotary pump

- Mechanical pump
- Produce vibrations
- Low vacuum
- Used as backing pump
- Dry scroll pumps

Oil diffusion pump

Turbomolecular pump

- Requires intermediate vacuum
 - Need backing pump

wikipedia.org

~100 000 RPM

wikipedia.org

wikipedia.org

Ion getter pump

- Ultra-High vacuum
- Slow
- Requires high-vacuum
 - Turbomolecular pump backed

Vacuum system

- Combination of pumps
- Isolated chambers
- Pressure gauges
- Buffer tank

Sample preparation

- Preparation of the perfect sample to image
 - The better sample the better result
 - 1st most difficult step
 - molecular biology / microbiology / biochemistry
 - Preparative methods proteins / protein complexes
- Vitrification
 - Embed the sample into vitreous ice
- Vitrified sample storage
 - Keep the sample vitrified

Types of EM grids

- EM grids
 - Copper
 - Gold
- Grid coating layer
 - Carbon coated
 - Lacey carbon
 - Holey carbon
 - Carbon coated holey carbon
 - Holey Gold (UltrAuFoil)
- Hole parameters
 - Hole shape circular, hexagonal
 - Hole size/spacing 2/1; 2/2; 1.3/1.6 etc....


```
Holey Carbon
```


edeninstruments.com

Vitrification - instrumentation

- Immobilization
- Why to freeze the samples
- Vitreous ice
- Beam induced damage

Sample preparation - challenges

EITEC

Spottiton, Vitrojet, Shake-it-off

Preparation

Not widely used yet

Programmable number of droplets

What we have learned.....

- Cryo-EM not a complimentary method any more
- Principles of optic parts of TEM
- Detection devices and their properties
- Non-optic parts of electron microscope
- Sample preparation

The end

ThermoFisher

