HW 3	Inorganic Materials Chemistry	Name:	
Points:	C7780	Date due:	
Max. 100 points	Fall 2022		

1. (15 pts) In the manganese(II) oxide, the Mn^{2+} ions occupy the octahedral holes in the cubic close packed structure of oxides.
a) Describe the splitting of the d-orbitals and assign symmetry labels (draw energy level diagram).
b) Assuming the oxide ligand to be a weak field ligand, populate the d-orbitals with electrons.
c) The total spin of the Mn^{2+} is \qquad and its multiplicity is \qquad .
2. ($\mathbf{1 5} \mathbf{~ p t s}$) The unit cell for a hexagonal close-packed (hcp) metal is shown below.
a) Label atom layers A, B or C to identify the close-packed layers they belong to.
b) How many lattice points Z contain this unit cell? Show your work.

3. ($\mathbf{1 5} \mathbf{p t s}$) Zeolite A (LTA) displays a single peak in the ${ }^{29}$ Si MAS NMR spectrum at 89 ppm and has a $\mathrm{Si} / \mathrm{Al}$ ratio of 1 . Explain these observations.
4. (15 pts) Zeolite A (Ca form), when loaded with platinum, has been found to be a good catalyst for the oxidation of hydrocarbon mixture. If the mixture contains branched chain hydrocarbons, these do not react. Describe a possible reason to explain these observations.
5. (40 pts) Calculate the wall thickness of a hexagonal MCM-41 mesoporous material, assume that it possesses cylindrical pores.
a) First, calculate the $d(100)=$ interplanar distance in the (100) plane from the XRD diffractogram. CuK α radiation was used with $\lambda=1.542 \AA$. Diffraction maximum was found at $2.14^{\circ} 2 \theta$.

b) Now, derive the formula relating the interplanar distance $d(100)$ to the hexagonal mesoporous parameter a_{0} and calculate its value.

c) Derive the formula relating the diameter D_{p} of a pore to specific surface area $\mathrm{SA}\left(870 \mathrm{~m}^{2} / \mathrm{g}\right)$ and total pore volume $V_{\mathrm{p}}\left(0.683 \mathrm{~cm}^{3} / \mathrm{g}\right)$. Assume cylindrical pores.

d) Finally, calculate the wall thickness ($w t$) of MCM41 material.
