Heating: furnace, laser, plasma, flame, arc

Gas-Metal Rxn

 $3 \text{ Si} + 2 \text{ N}_2 \rightarrow \text{ Si}_3 \text{N}_4$

W + CH₄ \rightarrow WC + H₂ mp 2720 °C WC dissolved in Co = cemented carbides (Widia materials) Cementite steel + H₂/CO + CH₄ + NH₃ \rightarrow Fe₃C + nitrides

Gas-Gas Rxn

Flame hydrolysis

volatile compounds are passed through an oxygen-hydrogen stationary flame, homogeneous nucleation from supersaturated vapor (nano):

SiCl₄ + H₂O \rightarrow OSiCl₂ + 2 HCl OSiCl₂ + H₂O \rightarrow SiClOOH + HCl

 $\mathrm{SiCIOOH} \rightarrow \rightarrow \rightarrow \rightarrow \mathrm{SiO}_2 + \mathrm{HCI}$

Y₂O₃ Particles by Flame Aerosol Process

Flame Aerosol Process

Calcium phosphate nanoparticles Ca/P molar ratios 1.43 to 1.67

Synthesized by simultaneous combustion of $Ca(OAc)_2 + OP(O^nBu)_3$ in a flame spray reactor

Fluoro-apatite and zinc or magnesium doped calcium phosphates adding trifluoroacetic acid or metal carboxylates into the fuel

Nanoparticle morphology

At a molar ratio of Ca/P < 1.5 promoted the formation of dicalcium pyrophosphate $(Ca_2P_2O_7)$

Phase pure tricalcium phosphate TCP - $Ca_3(PO_4)_2$ obtained with a precursor Ca/P ratio of 1.52 after subsequent calcination at 900 °C

Micropores and the facile substitution of both anions and cations Possible application as a biomaterial

SEM micrographs of NiCo₂O₄ particles obtained from different concentrations of Co(OAc)₂ and Ni(OAc)₂ precursor solutions – Lower concentration reduces particle size

Spray Pyrolysis

- (1) mass flow controller O_2 1 L/min
- (2) ultrasonic nebulizer aqueous
- solution 2 $Co(OAc)_2$: 1 $Ni(OAc)_2$
- (3) 3-zone heater 400 °C
- (4) temperature controller
- (5) electrostatic precipitator

(a) HAADF-STEM of a rutile@anatase core@shell microsphere; (b) titanium L2,3 core-loss EELS spectra acquired from the indicated areas compared to reference TiO_2 polymorphs [rutile (green) and anatase (red)]

Rutile@Anatase core@shell microspheres (b)) fitting range (C) Ti-L_{2.3} edge ~~Zone2 Zone1 Rutile C D Anatase 500 nm 458 466 470 500 nm 462 Energy Loss (eV) (d) (e) 500 nm 500 nm 500 nm R/A

(d-f) EELS maps: (d) rutile (green), (e) anatase (red), and (f) rutile and anatase overlaid color map. (c) 3D tomographic reconstruction of another typical rutile@anatase core-shell microsphere, together with the corresponding HAADF-STEM image (inset)

He atmosphere (100 torr), U = 10-20 V, I = 0-250 AFullerene C₆₀ extracted from the soot with toluene Yields 1 – 10 %

Vapor Phase Transport Syntheses

Sealed glass tube reactors Solid reactant(s) A + gaseous transporting agent B (O₂, Cl₂, l₂, CO.....) Temperature gradient furnace $\Delta T \sim 50 - 1000 \ ^{\circ}C$

A + B react at T_2 to form gaseous AB (g) Equilibrium established A (s) + B (g) \rightleftharpoons AB (g) Equilibrium constant K Gaseous transport of AB (g) to the other end Concentration gradient of AB (g) = driving force for gaseous diffusion AB (g) decomposes back to A (s) at T_1 , crystals of pure A Temperature dependent K Equilibrium concentration of AB (g) changes with T, different at T_2 and T_1

Vapor Phase Transport Syntheses

Whether T1 < T2 or T1 > T2 depends on the thermochemical balance of the reaction !

Transport can proceed from higher to lower or from lower to higher temperature

Example: Pt (s) + $O_2(g) \rightleftharpoons PtO_2(g)$

Endothermic reaction, PtO₂ forms at hot end, diffuses to cool end, deposits well formed Pt crystals, observed in furnaces containing Pt heating elements or thermocouples (thermometers)

Chemical vapor transport, $T_2 > T_1$, provides concentration gradient and thermodynamic driving force for gaseous diffusion of vapor phase transport agent AB (g)

Uses of VPT

- Synthesis of new solid state materials
- Growth of single crystals
- Purification of solids

Thermodynamics of VPT

van't Hoff equation

 $A(s) + B(g) \rightleftharpoons AB(g)$

$$\ln K_2 - \ln K_1 = \ln \frac{K_2}{K_1} = \frac{\Delta H^0}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Reversible equilibrium needed: $\Delta G^{\circ} = -RT \ln K_{eq} = \Delta H^{\circ} - T \Delta S^{\circ}$

* Exothermic $\Delta H^{\circ} < 0$ Smaller T implies larger K_{eq} AB (g) forms at cooler end, decomposes at hotter end of reactor

W + 3 Cl₂ \rightleftarrows WCl₆ 400/1400 °C (exo) Ni + 4 CO \rightleftarrows Ni(CO)₄ 50/190 °C (exo)

* Endothermic $\Delta H^{\circ} > 0$ Larger T implies larger K_{eq} AB (g) forms at hotter end, decomposes at cooler end of reactor

2 AI + AICI₃ \rightleftarrows 3 AICI 1000/600 °C (endo) 4 AI + AI₂S₃ \rightleftarrows 3 AI₂S 1000/900 °C (endo)

Vapor Phase Transport Syntheses

Estimation of the thermochemical balance (Δ H) of a transport reaction:

$$ZnS_{(s)} + I_{2(gas)} \rightleftharpoons ZnI_{2(gas)} + S_{(g)} \Delta H = ??$$

$$Zn_{(s)} + I_{2(g)} \rightleftharpoons ZnI_{2(gas)} \qquad \Delta H_{f} = -88 \text{ kJ mol}^{-1}$$

$$ZnS_{(s)} \rightleftharpoons Zn_{(s)} + S_{(g)} \qquad -(\Delta H_{f}) = +201 \text{ kJ mol}^{-1}$$

$$\Sigma \qquad ZnS_{(s)} + I_{2(gas)} \rightleftharpoons ZnI_{2(gas)} + S_{(g)} \quad \Delta H = +113 \text{ kJ mol}^{-1}$$

Endothermic reaction, transport from hot to cold end!

Purification/crystallization of metals: Van Arkel Method

 $Cr(s) + I_2(g) \rightleftharpoons CrI_2(g)$ Exothermic

Exothermic, Crl_2 (g) forms at cold end, pure Cr (s) deposited at hot end Useful for Ti, Hf, V, Nb, Cu, Ta, Fe, Th Removes metals from carbide, nitride, oxide impurities

Double Transport involving opposing Exothermic-Endothermic reactions Endothermic:

 $WO_2(s) + I_2(g) (800 \ ^\circ C) \rightleftharpoons WO_2I_2(g) (1000 \ ^\circ C)$

Exothermic:

W (s) + 2 H₂O (g) + 3 I₂ (g) (1000 °C) \rightleftharpoons WO₂I₂ (g) + 4 HI (g) (800 °C)

The antithetical nature of these two reactions allows W/WO_2 mixtures to be separated at different ends of the gradient reactor using H_2O/I_2 as the transporting VP reagents

Vapor Phase Transport for Synthesis

 $A(s) + B(g)(T_1) \rightleftharpoons (T_2) AB(g)$ AB(g) + C(s)(T_2) $\rightleftharpoons (T_1) AC(s) + B(g)$

Concept: couple VPT with subsequent reaction to give overall reaction: A (s) + C (s) (T₂) $\overrightarrow{\leftarrow}$ (T₁) AC (s)

Direct reaction sluggish even at high T

 $SnO_2(s) + 2 CaO(s) \rightarrow Ca_2SnO_4(s)$ Phosphor material for light-emitting diodes

The reaction speeded up with CO as VPT agent:

$$SnO_2(s) + CO(g) \rightleftharpoons SnO(g) + CO_2(g)$$

 $SnO(g) + CO_2(g) + 2 CaO(s) \rightleftharpoons Ca_2SnO_4(s) + CO(g)$

15

Direct reaction is sluggish:

 $Cr_2O_3(s) + NiO(s) \rightarrow NiCr_2O_4(s)$ Magnetic materials

 $Cr_2O_3(s) + 3/2O_2 \rightleftharpoons 2CrO_3(g)$ Greatly enhanced rate with O_2

 $2 \operatorname{CrO}_3(g) + \operatorname{NiO}(s) \rightleftharpoons \operatorname{NiCr}_2O_4(s) + 3/2 O_2(g)$

Overcoming Passivation Through VPT

2 Al (s) + 3 S (s) \rightarrow Al₂S₃ (s) Passivating skin stops reaction

In presence of surface cleansing VPT agent I₂:

Endothermic:

 $AI_2S_3(s) + 3I_2(g) (700 \ ^{\circ}C) \rightleftharpoons 2AII_3(g) + 3/2S_2(g) (800 \ ^{\circ}C)$

Vapor Phase Transport for Synthesis

 $Zn(s) + S(s) \rightarrow ZnS(s)$ passivation prevents reaction to completion

Endothermic:

ZnS (s) + I_2 (g) (800 °C) \rightleftharpoons Zn I_2 (g) + $\frac{1}{2}$ S₂ (g) (900 °C)

VPT Synthesis of $ZnWO_4$ from WO_3 and ZnOa phosphor host crystal for Ag⁺, Cu⁺, Mn²⁺

WO₃ (s) + 2 Cl₂ (g) (980 °C) $\overrightarrow{\leftarrow}$ WO₂Cl₂ (g) + Cl₂O (g) (1060 °C) ZnO (s) + WO₂Cl₂ (g) + Cl₂O (g) (1060 °C) $\overrightarrow{\leftarrow}$ ZnWO₄ (s) + Cl₂ (g)

Growth of epitaxial GaAs films or single crystals by VPT

GaAs (s) + HCl (g) \rightleftharpoons GaCl (g) + $\frac{1}{2}$ H₂ (g) + $\frac{1}{4}$ As₄ (g) Endothermic

Laser-induced Homogeneous Pyrolysis

Laser wavelength 10.60 ± 0.05 μm

- Overlap between the vertical reactant gas stream and the horizontal laser beam
- Reaction zone away from the chamber walls
- Nucleation of nanoparticles
- Less contamination
- Narrow size distribution

Excitation energy transferred to vibrationaltranslational modes ⇒ T increases

ENERGY —

Iron-oxide Nanoparticles by Laser-induced Homogeneous Pyrolysis

$2 \operatorname{Fe}(\operatorname{CO})_5 + 3 \operatorname{N}_2 \operatorname{O} \rightarrow \operatorname{Fe}_2 \operatorname{O}_3 + 10 \operatorname{CO} + 3 \operatorname{N}_2$

