1 Gas Phase Reactions Heating: furnace, laser, plasma, flame, arc Gas-Metal Rxn Ti + N2  TiN 1800 K Ti + CH4  TiC + H2 mp 2940 C 3 Si + 2 N2  Si3N4 W + CH4  WC + H2 mp 2720 C WC dissolved in Co = cemented carbides (Widia materials) Cementite steel + H2/CO + CH4 + NH3  Fe3C + nitrides 2 Gas Phase Reactions Gas-Gas Rxn Flame hydrolysis volatile compounds are passed through an oxygen-hydrogen stationary flame, homogeneous nucleation from supersaturated vapor (nano): SiCl4 + 2 H2 + O2  SiO2 + 4 HCl fumed silica Reagent bp/C Product SiCl4 57 SiO2 AlCl3 180 (subl.) Al2O3 TiCl4 137 TiO2 CrO2Cl2 117 Cr2O3 Fe(CO)5 103 Fe2O3 GeCl4 84 GeO2 Ni(CO)4 42 NiO SnCl4 114 SnO2 ZrCl4 331 (subl.) ZrO2 VOCl3 127 V2O5 3 SiCl4 + H2O  OSiCl2 + 2 HCl OSiCl2 + H2O  SiClOOH + HCl SiClOOH     SiO2 + HCl Gas Phase Reactions Si60O90Cl60 4 Y2O3 Particles by Flame Aerosol Process oxygen hydrogen Y(NO3)3 Particle size control by precursor concentration Higher concentration = larger size 5 Calcium phosphate nanoparticles Ca/P molar ratios 1.43 to 1.67 Synthesized by simultaneous combustion of Ca(OAc)2 + OP(OnBu)3 in a flame spray reactor Fluoro-apatite and zinc or magnesium doped calcium phosphates adding trifluoroacetic acid or metal carboxylates into the fuel Nanoparticle morphology At a molar ratio of Ca/P < 1.5 promoted the formation of dicalcium pyrophosphate (Ca2P2O7) Phase pure tricalcium phosphate TCP - Ca3(PO4)2 obtained with a precursor Ca/P ratio of 1.52 after subsequent calcination at 900 °C Micropores and the facile substitution of both anions and cations Possible application as a biomaterial Flame Aerosol Process Spray Pyrolysis 6 (1) mass flow controller – O2 1 L/min (2) ultrasonic nebulizer – aqueous solution 2 Co(OAc)2 : 1 Ni(OAc)2 (3) 3-zone heater - 400 C (4) temperature controller (5) electrostatic precipitator SEM micrographs of NiCo2O4 particles obtained from different concentrations of Co(OAc)2 and Ni(OAc)2 precursor solutions – Lower concentration reduces particle size 400 C Tubular furnace reactor Morphology Control 7 (a) HAADF-STEM of a rutile@anatase core@shell microsphere; (b) titanium L2,3 core-loss EELS spectra acquired from the indicated areas compared to reference TiO2 polymorphs [rutile (green) and anatase (red)] (d−f) EELS maps: (d) rutile (green), (e) anatase (red), and (f) rutile and anatase overlaid color map. (c) 3D tomographic reconstruction of another typical rutile@anatase core−shell microsphere, together with the corresponding HAADFSTEM image (inset) Rutile@Anatase core@shell microspheres 8 Gas Phase Reactions High-power CO2 lasers 3 SiH4 + 4 NH3  Si3N4 + 12 H2 HN(SiMe3)2 + NH3  Si3N4 + SiC DC-Ar Plasma TiCl4 + NH3  TiN + HCl Electric arc synthesis (Krätschmer) Graphite  C + C2 + …. soot + C60 + C70 He atmosphere (100 torr), U = 10–20 V, I = 0–250 A Fullerene C60 extracted from the soot with toluene Yields 1 – 10 % 9 traces of a transporting agent B (e.g., I2) T1T2 A AB (g) A Vapor Phase Transport Syntheses Sealed glass tube reactors Solid reactant(s) A + gaseous transporting agent B (O2, Cl2, I2, CO…..) Temperature gradient furnace T ~ 50 - 1000 C A + B react at T2 to form gaseous AB (g) Equilibrium established A (s) + B (g) ⇄ AB (g) Equilibrium constant K Gaseous transport of AB (g) to the other end Concentration gradient of AB (g) = driving force for gaseous diffusion AB (g) decomposes back to A (s) at T1, crystals of pure A Temperature dependent K Equilibrium concentration of AB (g) changes with T, different at T2 and T1 A (s) + B (g)  AB (g) A (s) + B (g)  AB (g) 10 Whether T1 < T2 or T1 > T2 depends on the thermochemical balance of the reaction ! Transport can proceed from higher to lower or from lower to higher temperature Vapor Phase Transport Syntheses Example: Pt (s) + O2 (g) ⇄ PtO2 (g) Endothermic reaction, PtO2 forms at hot end, diffuses to cool end, deposits well formed Pt crystals, observed in furnaces containing Pt heating elements or thermocouples (thermometers) Chemical vapor transport, T2 > T1, provides concentration gradient and thermodynamic driving force for gaseous diffusion of vapor phase transport agent AB (g) Uses of VPT • Synthesis of new solid state materials • Growth of single crystals • Purification of solids 11 Thermodynamics of VPT          21 0 1 2 12 11 lnlnln TTR H K K KK van’t Hoff equation Reversible equilibrium needed: G = RT lnKeq = H  T S * Exothermic H < 0 Smaller T implies larger Keq AB (g) forms at cooler end, decomposes at hotter end of reactor W + 3 Cl2 ⇄ WCl6 400/1400 C (exo) Ni + 4 CO ⇄ Ni(CO)4 50/190 C (exo) * Endothermic H > 0 Larger T implies larger Keq AB (g) forms at hotter end, decomposes at cooler end of reactor 2 Al + AlCl3 ⇄ 3 AlCl 1000/600 C (endo) 4 Al + Al2S3 ⇄ 3 Al2S 1000/900 C (endo) A (s) + B (g) ⇄ AB (g) 12 Estimation of the thermochemical balance (H) of a transport reaction: ZnS(s) + I2(gas) ⇄ ZnI2(gas) + S(g) H = ?? Zn(s) + I2(g) ⇄ ZnI2(gas) Hf = 88 kJ mol-1 ZnS(s) ⇄ Zn(s) + S(g) (Hf) = +201 kJ mol-1 ----------------------------------------------------------------  ZnS(s) + I2(gas) ⇄ ZnI2(gas) + S(g) H = +113 kJ mol-1 Endothermic reaction, transport from hot to cold end! Vapor Phase Transport Syntheses Applications of VPT Methods 13 Ti + 2 I2 ⇄ TiI4 H = 376 kJ mol-1 Exothermic: transport from cold to hot Purification/crystallization of metals: Van Arkel Method Cr (s) + I2 (g) ⇄ CrI2 (g) Exothermic Exothermic, CrI2 (g) forms at cold end, pure Cr (s) deposited at hot end Useful for Ti, Hf, V, Nb, Cu, Ta, Fe, Th Removes metals from carbide, nitride, oxide impurities W-filament (ca. 1500 K) Ti-powder (ca. 800 K) I2 Ti-crystals Applications of VPT Methods 14 Double Transport involving opposing Exothermic-Endothermic reactions Endothermic: WO2 (s) + I2 (g) (800 C) ⇄ WO2I2 (g) (1000 C) Exothermic: W (s) + 2 H2O (g) + 3 I2 (g) (1000 C) ⇄ WO2I2 (g) + 4 HI (g) (800 C) The antithetical nature of these two reactions allows W/WO2 mixtures to be separated at different ends of the gradient reactor using H2O/I2 as the transporting VP reagents Applications of VPT Methods 15 Vapor Phase Transport for Synthesis A (s) + B (g) (T1) ⇄ (T2) AB (g) AB (g) + C (s) (T2) ⇄ (T1) AC (s) + B (g) Concept: couple VPT with subsequent reaction to give overall reaction: A (s) + C (s) (T2) ⇄ (T1) AC (s) Direct reaction sluggish even at high T SnO2 (s) + 2 CaO (s)  Ca2SnO4 (s) Phosphor material for light-emitting diodes The reaction speeded up with CO as VPT agent: SnO2 (s) + CO (g) ⇄ SnO (g) + CO2 (g) SnO (g) + CO2 (g) + 2 CaO (s) ⇄ Ca2SnO4 (s) + CO (g) Applications of VPT Methods 16 Direct reaction is sluggish: Cr2O3 (s) + NiO (s)  NiCr2O4 (s) Magnetic materials Cr2O3 (s) + 3/2 O2 ⇄ 2 CrO3 (g) Greatly enhanced rate with O2 2 CrO3 (g) + NiO (s) ⇄ NiCr2O4 (s) + 3/2 O2 (g) Overcoming Passivation Through VPT 2 Al (s) + 3 S (s)  Al2S3 (s) Passivating skin stops reaction In presence of surface cleansing VPT agent I2: Endothermic: Al2S3 (s) + 3 I2 (g) (700 C) ⇄ 2 AlI3 (g) + 3/2 S2 (g) (800 C) Applications of VPT Methods 17 Vapor Phase Transport for Synthesis Zn (s) + S (s)  ZnS (s) passivation prevents reaction to completion Endothermic: ZnS (s) + I2 (g) (800 C) ⇄ ZnI2 (g) + ½ S2 (g) (900 C) VPT Synthesis of ZnWO4 from WO3 and ZnO a phosphor host crystal for Ag+, Cu+, Mn2+ WO3 (s) + 2 Cl2 (g) (980 C) ⇄ WO2Cl2 (g) + Cl2O (g) (1060 C) ZnO (s) + WO2Cl2 (g) + Cl2O (g) (1060 C) ⇄ ZnWO4 (s) + Cl2 (g) Growth of epitaxial GaAs films or single crystals by VPT GaAs (s) + HCl (g) ⇄ GaCl (g) + ½ H2 (g) + ¼ As4 (g) Endothermic 18 19 Laser-induced Homogeneous Pyrolysis Sensitizer SF6 948 cm-1 Isopropanol 958 cm-1 Laser wavelength 10.60 ± 0.05 m • Overlap between the vertical reactant gas stream and the horizontal laser beam • Reaction zone away from the chamber walls • Nucleation of nanoparticles • Less contamination • Narrow size distribution Fe(CO)5  Fe + 5 CO C2H4 + h  C2H4 * Excitation energy transferred to vibrationaltranslational modes  T increases 20 Iron-oxide Nanoparticles by Laser-induced Homogeneous Pyrolysis 2 Fe(CO)5 + 3 N2O  Fe2O3 + 10 CO + 3 N2 PXRD TEM Maghemite Fe2O3