Sol-Gel Methods

Crystallinity: Microcrystalline, Nanocrystalline, Amorphous, Glasses

Dimensionality: Monoliths, Coatings, Films, Fibers, Nanoparticles

Drying: Xerogels, Aerogels, Ionogels, Cryogels

Heat Treatment: Powders, Glasses, Ceramics

Composition: Oxides, Silicates, Phosphates, Nitrides, Carbon, Inorganic-Organic Hybrid Materials

1

Sol-Gel Methods

Sol = a fluid system of stable suspension of colloidal (1 nm – 1 μ m) solid particles or polymeric molecules in a liquid

(Below 1 μ m – Brownian motion, larger than 1 μ m – sedimentation)

Gel = a nonfluid, porous, two-phase system of threedimensional, continuous solid network (elastic or rigid) surrounded by a continuous liquid phase

Colloidal (particulate) gels = agglomeration of dense colloidal particles

Polymeric gels = agglomeration of polymeric particles made from subcolloidal units

Agglomerate = assemblage of particles rigidly joined together, as by partial fusion (sintering) or by growing together, covalent bonds, hydrogen bonds, polymeric chain entanglement

Aggregate = assemblage of particles which are **loosely** coherent, van der Walls forces

Sol and Gel

Colloidal suspension of volume V

(a) Sol

Wet monolith of volume V (b) Gel

Gel point = point of incipient network formation

Sol-to-Gel transition is difficult to define Rheological methods = viscosity increases

Sol-Gel Process Solution Aerogel a wa 9 a ^ga m 20000 Sol-to-Gel transition SC drying 💉 Xerogel Gel Sol drying casting sintering spin or dip drawing Monolith coating extrusion films fibers ceramics, glass

Sol-Gel Processes

Sol-Gel Chemistry

Aqueous

 Colloid Route – inorganic salts, water glass, change pH, hydrolysis, polycondensation

• Metal-Organic Route – metal alkoxides, amides, addition of water, hydrolysis, polycondensation

 Pechini and Citrate Gel Method – inorganic metal salts, complexing agent, chelate formation, polyesterification with polyfunctional alcohol

Nonaqueous

- Hydroxylation (= formation of M–OH)
- Heterofunctional Condensations ($M-X + Y-O-M \rightarrow XY + M-O-M$)

Metal salts in aqueous solution, pH and temperature control

Solvation – water molecule becomes more acidic $M^{z^+} + :OH_2 \rightarrow [M \leftarrow OH_2]^{z^+}$

For transition metal cations, charge transfer occurs from the filled bonding orbital of the water molecule to the empty d orbitals of the transition metal, therefore, the partial positive charge on the H of water molecule increases, making the water molecule more acidic

Hydrolysis $[M(H_2O)_b]^{Z^+} \rightleftharpoons [M(H_2O)_{b-1}OH]^{(Z-1)+} + H^+$

Condensation-polymerization $[M(H_2O)_b]^{Z^+} \rightleftharpoons [(H_2O)_{b-1}M(OH)_2M(H_2O)_{b-1}]^{(2Z-2)+} + 2H^+$

Depending on the water acidity and the charge transfer, the following equilibria are established:

$[M(OH_2)]^{z+} \rightleftharpoons [M-OH]^{(z-1)+} + H^+ \rightleftharpoons [M=O]^{(z-2)+} + 2 H^+$ Aqua Hydroxo Oxo

Composition of complexes depends on:

- nature of transition metal
- oxidation state
- charge
- ionic radius
- electronegativity
- nature of ligands
- coordination abilities
- pH of solution

10

 χ Electronegativity δ Partial charges on ions and H₂O molecule

Complex	$\hat{\mathbf{v}}$	δ(M)	δ(Ο)	<i>δ</i> (H)	$\delta(H_2O)$	
	Λ					
$[Mn(OH_2)_6]^{2+1}$	2.657	+0.59	-0.33	+0.28	+0.23	
$[Cr(OH_2)_6]^{3+}$	2.762	+0.68	-0.29	+0.34	+0.39	
$[Ti(OH_2)_6]^{4+}$	2.848	+0.98	-0.25	+0.38	+0.51	
$[V(OH_2)_6]^{5+}$	2.983	+0.84	-0.20	+0.45	+0.70	

The higher a charge on ion, the more acidic coordinated waters are

Only hydroxo groups Olation can condense !!

= a hydroxo bridge (-OH- "ol" bridge) is formed between two metals centers

Oxolation

= an oxo bridge (–O–) is formed between two/three metals centers

Electronegativity of a central atom

Хм

determines degree and mechanism of condensation for neutral hydroxo containing species

Area I : monomeric and soluble cations Area II : condensation by olation (M–OH–M) Area III : condensation by olation or oxolation Area IV : condensation by oxolation (M–O–M) Area V : monomeric and soluble anions

Metal-Oxide Clusters

Metal-Oxide Clusters

M4(µ3-O)4

 $M_6(\mu_3-O)_8$

M₆(µ₃-O)₆

M12O24

16

Pechini Sol-Gel Route

Pechini Sol-Gel Route

Pechini Sol-Gel Route

EG:CA:M

Metal-Organic (Alkoxide) Route

Hydrolysis Metal / Metalloid Alkoxides $[M(OR)_x]_n + H_2O \rightarrow ROH + M-O-H$

 $Si(OEt)_4 = TEOS$

Metal Amides $[M(NR_2)_x]_n + H_2O \rightarrow R_2NH + M-O-H$

Polycondensation

Metal-Organic Precursors

Metal Alkoxides [M(OR)_x]_n

formed by the replacement of the hydroxylic hydrogen of an alcohol (ROH) through a metal atom

n = degree of molecular association

Heterometallic Alkoxides [M_aM'_b(OR)_x]_n

Most frequently used precursor for sol-gel: TEOS = $Si(OEt)_4$

Metal Amides $[M(NR_2)_x]_n$

formed by the replacement of one of the hydrogen atoms of an amine (R_2NH) through a metal atom 21

Metal-Organic (Alkoxide) Route

Oligomers formed by hydrolysis-condensation process

- -linear
- -branched
- -cyclic
- -polyhedral

Never goes to pure SiO₂

n Si(OR)₄ + 2n+(a–b)/2 H₂O \rightarrow Si_nO_{2n–(a+b)/2}(OH)_a(OR)_b + (4n–b) ROH

Modified Silicon Alkoxides as Precursors

Silsesquioxanes = $RSiO_{1.5}$ (sesqui = 3/2)

Hybrid Inorganic-Organic Materials

Self-Assembly of Bridged Silsesquioxanes

Nanostructuring of hybrid silicas through a Self-Recognition Process - the crystallization of the hydrolyzed species by H-bonding followed by their polycondensation in solid state

Templating Porosity in Bridged Polysilsesquioxanes

Polyhedral Oligomeric Silsesquioxanes (POSS)

Polymers and Copolymers of POSS

1D linear polymers

Polymers and Copolymers of POSS

Mechanism of Sol-Gel Reactions in Silica Systems

Colloid Route

Metal-Organic Route Metal alkoxide in alcoholic solution, water addition

Mechanism of Silicon Alkoxide Route

Hydrolysis of silicon alkoxide in alcoholic solution by water addition is SLOW

Acid catalysed hydrolysis

Base catalysed hydrolysis

Metal-Organic (Alkoxide) Route

Oligomers formed by hydrolysis-condensation process

- -linear
- -branched
- -cyclic
- -polyhedral

Never goes to pure SiO₂

 $n \operatorname{Si}(OR)_4 + 2n + (a-b)/2 \operatorname{H}_2O \rightarrow \operatorname{Si}_nO_{2n-(a+b)/2}(OH)_a(OR)_b + (4n-b) \operatorname{ROH}$

Hydrolysis - Condensation Kinetics Si(OR)_x(OH)_y(OSi)_z

Hydrolysis

Si(OR)₄

Si(OH)₄

400	310	220	130	040	15
	301	211	121	031	sati
		202	112	022	lape
			103	013	S
хуz				004	•
				_ _	

x + y + z = 4

Si(OSi)₄

Metal-Organic (Alkoxide) Route

Metal-Organic (Alkoxide) Route

 $M = OSiR_3$ $D = O_2SiR_2$ $T = O_3SiR$ $Q = O_4Si$

The notation of Q^a_b

"Q" stands for the maximum 4 siloxane bonds for each Si "a" is the actual number of siloxane bonds on each Si "b" is the number of Si in the unit

 $Q^{0} = O_{4}Si$ $Q^{1} = O_{3}SiOSi$ $Q^{2} = O_{2}Si(OSi)_{2}$ $Q^{3} = OSi(OSi)_{3}$ $Q^{4} = Si(OSi)_{4}$ ³⁷

Linear and Branched Silicate Anions

Monomer

 $Q_1^0 - C_1$

The notation of Q^a_b

"Q" stands for the maximum 4 siloxane bonds for each Si "a" is the actual number of siloxane bonds on each Si "b" is the number of Si in the unit

Cyclic and Polyhedral Silicate Anions

The notation of Q^a_b

Oligomeric Silicate Anions

Oligomers formed by hydrolysis-condensation

Si₅₀O₇₅(OH)₅₀ three-dimensional clusters formed by (A) four-rings (B) six-rings

Amorphous Silica / Water Interface

H₂O Cations Anions Protons Si–O/H

The Electrical Double Layer

The electrical double layer at the interface of silica and a diluted KCI solution

 ψ = local potential OHP = Outer Helmholtz plane u = local electroosmotic velocity y = distance from the surface

Negative surface charge stems from deprotonated silanols Shielding of this surface charge occurs due to adsorbed ions inside the OHP and by mobile ions in a diffuse layer

The shear plane = where hydrodynamic motion becomes possible

possible Zeta = potential at the shear plane

Sol-Gel Methods

Precursor Substituent Effects

Steric effects:

branching and increasing of the chain length LOWERS the hydrolysis rate

 $Si(OMe)_4 > Si(OEt)_4 > Si(O^nPr)_4 > Si(O^iPr)_4 > Si(O^nBu)_4$

Inductive effects:

electronic stabilization/destabilization of the transition state (TS)

Electron density at Si decreases: R→Si > RO→Si > HO–Si > SiO←Si

Partial Charge Model (Livage and Henry)

Electron transfer occurs when atoms combine to give a molecule

Charge transfer causes each atom to acquire

a partial positive or negative charge, δ_i

This transfer mainly depends on the electronegativity difference between atoms

The electronegativity χ_i of an atom varies linearly with its partial charge δ_i

 $\chi_i = \chi^o_i + \mathbf{k} \, \delta_i$

Electron transfer must stop when all electronegativities have the same value (Electronegativity equalization)

= the mean electronegativity χ

46

Partial Charge Model (Livage and Henry)

The mean electronegativity $\overline{\chi}$ of a molecule z = the electric charge (for ions) k = a constant that depends on the electronegativity scale (k = 1.36 in Pauling's units)

$$\bar{\chi} = \frac{\sum_{i} \sqrt{\chi_i} + 1.36z}{\sum_{i} (1/\chi_i)},$$

The partial charge δ_i on an atom in the molecule

$$\delta_i = \frac{\bar{\chi} - \chi_i}{1.36\sqrt{\chi_i}}.$$

Table 1	Partial	charge	values	$\partial_i 0$	f various	silanes	calculated	by th	ıe
partial c	harge m	odel							

	Si(OR) ₄	CH ₃ Si(OR) ₃	C ₂ H ₅ Si(OR) ₃
$\delta_{\mathbf{O}}$ values			
$\vec{R} = CH_3$	-0.44	-0.46	-0.47
$R = C_2 H_5$	-0.46	-0.47	-0.48
$R = C_3 H_7$	-0.47	-0.48	-0.48
δ_{Si} values			
$R = CH_3$	+0.35	+0.33	+0.32
$R = C_2 H_5$	+0.32	+0.31	+0.31
$R = C_3 H_7$	+0.31	+0.30	+0.30

Partial Charge Model (Livage and Henry)

Alkoxide	Zr(OEt) ₄	Ti(OEt) ₄	Nb(OEt) ₅	Ta(OEt) ₅	VO(OEt) ₃	W(OEt) ₆	Si(OEt) ₄
δ (Μ)	+0.65	+0.63	+0.53	+0.49	+0.46	+0.43	+0.32

The hydrolysis rate depends on the δ (M):

The more positive partial charge δ_i the faster hydrolysis reaction

$$k_h \approx 5 \cdot 10^{-9} \text{ mol}^{-1} \text{s}^{-1} \text{ for Si(OEt)}_4$$

$$k_h \approx 10^{-3} \text{ mol}^{-1} \text{ s}^{-1} \text{ for Ti(OEt)}_4$$

There is a problem to prepare mixed-metal oxides Ti-O-Si Hydrolysis/condensation leads to phase-separated mixture of TiO_2/SiO_2

Partial Charge Model

The number of valence electrons n* on the central atom of a radical AB

$$n^* = (N - p) + \frac{2m\chi_{\mathbf{B}}}{\chi_{\mathbf{A}} + \chi_{\mathbf{B}}} - \frac{s\chi_{\mathbf{A}}}{\chi_{\mathbf{A}} + \chi_{\mathbf{B}}}$$

N = the number of valence electrons on the free atom A p = the number of valence electrons supplied by B when forming the A–B bond m = the number of bonds between A and B s = the number of resonance contributions from A⁻ B+

Group electronegativity χ^{g}

$$\chi^{\rm g} = 0.31 \left(\frac{n^* + 1}{r_{\rm A}} \right) + 0.50$$

 r_A = the covalent radius of atom A in the radical AB

Partial Charge Model

Table 2 Group electronegativity χ^g values relevant to silanes-based sol–gel chemistry^{*a*}

Group	$\chi^{\mathbf{g}}$	Group	$\chi^{\mathbf{g}}$	
-CH ₃	2.47	-H	2.62	
$-C_2H_5$	2.48	$-\mathrm{OH}^b$	3.49	
$-C_3H_7$	2.48	-OCH ₃	3.54	
$-C_{6}H_{5}$ (-Ph)	2.72	$-OC_2H_5$	3.54	
$-CH = CH_2$	2.79	-SiCl ₃	2.10	
-NH ₂	2.99	Si ^c	1.84	

^{*a*} Calculated using Gordy's electronegativity. ^{*b*} Hydroxide groups are believed to be more electronegative and withdraw more electrons than alkoxy groups presumably due to the solvation effects in polar solvent. ^{*c*} Gordy's electronegativity for neutral Si.

Acidic conditions:

Hydrolysis reaction rate decreases as more alkoxy groups are hydrolyzed

Electron density at Si decreases:

R→Si > RO→Si > HO–Si > SiO←Si

TS (+) is destabilized by increasing number of electron withdrawing OH groups (wrt OR)

The reaction at terminal Si favored, as there is only one electron withdrawing SiO group

Linear polymer products are favored, leading to fibers

RSi(OR)₃ is more reactive than Si(OR)₄

Acid catalysed hydrolysis

Hydrolysis reaction rate decreases as more alkoxy RO groups are hydrolyzed and replaced with OH groups

Electron density at Si decreases:

R→Si > RO→Si > HO–Si > SiO←Si

Electron-donating

Electron-withdrawing

Basic conditions:

Hydrolysis reaction rate increases as more alkoxy groups are hydrolyzed

Electron density at Si decreases:

R→Si > RO→Si > HO–Si > SiO←Si

TS (-) is stabilized by increasing number of electron withdrawing OH groups (wrt OR)

The reaction at central Si favored, as there is more electron withdrawing SiO groups

Branched polymer products are favored, spherical particles, powders

```
RSi(OR)<sub>3</sub> less reactive than Si(OR)<sub>4</sub>
```


Hydrolysis reaction rate increases as more alkoxy RO groups are hydrolyzed and replaced with OH groups

Complete hydrolysis to Si(OH)₄

Electron density at Si decreases:

 $R \rightarrow Si > RO \rightarrow Si > HO - Si > SiO \leftarrow Si$

Electron-donating

Electron-withdrawing

Si-OH becomes more acidic with increasing number of Si-O-Si bonds

Electron density at Si decreases:

R→Si > RO→Si > HO–Si > SiO←Si

Nucleophilic catalysisF-Si-F bondsHMPAN-methylimidazolN,N-dimethylaminopyridin

Small amount of water (k < 4) = slow hydrolysis due to the reduced reactant concentration Condensation of incompletely hydrolyzed species

Large amount of water (k > 4) = slow hydrolysis due to the reactant dilution Condensation of completely hydrolyzed species Reverse reaction promoted - depolymerization of Si-O-Si

Hydrophobic effect - Si(OR)₄ are immiscible with water

Cosolvent ROH is used to obtain a homogeneous reaction mixture and prevent phase separation

Condensation Rate

Acid catalysed condensation fast protonation, slow condensation

Electron density at Si decreases:

 $R \rightarrow Si > RO \rightarrow Si > HO - Si > SiO \leftarrow Si$

Positively charged transition state (TS), fastest condensation for $(RO)_3SiOH > (RO)_2Si(OH)_2 > ROSi(OH)_3 > Si(OH)_4$

TS (+) is destabilized by increasing number of electron withdrawing OH groups

Hydrolysis fastest in the first step, i.e., the formation of (RO)₃SiOH

Condensation for this species also fastest, the formation of linear chains 58

Condensation Rate

Base catalysed condensation

Electron density at Si decreases:

R→Si > RO→Si > HO–Si > SiO←Si

Negatively charged transition state (TS), fastest condensation for $(RO)_3SiOH < (RO)_2Si(OH)_2 < ROSi(OH)_3 < Si(OH)_4$

TS (–) is stabilized by increasing number of electron withdrawing OH groups

Hydrolysis speeds up with more OH, i.e., the formation of Si(OH)₄

Condensation for the fully hydrolysed species fastest, the formation of highly crosslinked particles

Acid Catalysed Condensation

- For k > 4 : complete hydrolysis at early stage
- Reaction limited cluster aggregation (RLCA)
- Q⁰ or terminal groups Q¹ on chains
- Irreversible reactions in acidic pH
- Condensation to linear chains or weakly branched
- For k < 4 : incomplete hydrolysis at early stage
- Unhydrolysed chains, highly concentrated solution without gelling
- Spinnable to fibers
- Small primary particles
- Microporosity, Type I isotherms

pH ~ 2

60

Base Catalysed Condensation

- For k > 4 : complete hydrolysis at early stage
- Reversible reactions in basic pH
- Chains cleaved at Q¹, source of Q⁰
- Condensation to highly crosslinked particles
- Reaction limited monomer-cluster growth (RLMC)
- Compact nonfractal structure
- For k < 4 : incompletely hydrolysed species incorporated
- Fractal uniformly porous structure
- Large primary particles
- Mesoporosity, Type IV isotherms

pH > 7

Acid/Base Catalysed Condensation

Reaction limited cluster aggregation (RLCA)

Reaction limited monomer-cluster growth (RLMC) or Eden growth

Gelation = Sol-to-Gel Transition

Gel point - a spannig cluster reaches across the container Sol particles, oligomers and monomer still present A sudden viscosity increase at the gel point Further crosslinking - increase in elasticity

Bond Percolation

Gel point – modelling of a spannig cluster 500

s_{av}(p) = average cluster size

l_{av}(p) = average spanning length

P(p) = percolation probability = a bond is added to a spanning cluster

Kinetics of Sol-to-Gel Transition

Ageing of Gels

The sol-gel reactions continue

- unreacted species are retained in the porous structure
- reactive groups on the surface

Crosslinking

condensation of the OH surface groups, stiffening and shrinkage

Syneresis shrinkage causes expulsion of liquid from the pores

Properties of the gel can be influenced by ageing time, ageing temperature, solvent

Ageing of Gels

Coarsening

Dissolution and re-precipitation process Materials dissolve from the convex surfaces and deposits at the concave surfaces: necks

Ostwald Rippening

Smaller particles have higher solubility than larger ones

Phase Separation

Fast gelation, different miscibility, isolated regions of unreacted precursor, inclusions of different structure, opaque, phase separation

Strengthening

Ageing at high temperature Soaking in a solvent with high solubilization power

Drying of Gels

1. The constant rate period the gel is still flexible and shrinks as liquid evaporates

2. The critical point

the gel becomes stiff and resists further shrinkage and deformation by surface tension, the liquid begins to recede (meniscus with a contact angle θ) into the pores (radius r), surface tension γ creates large capillary pressures

*P*_c, stress, cracking

3. The first falling-rate period

a thin liquid film remains on the pore walls, flows to the surface and evaporates, the menisci first recede into the largest pores only, as these empty, the vapor pressure drops and smaller pores begin to empty

4. The second falling-rate period

liquid film on the walls is broken, further liquid transport by evaporation

Drying of Gels

Coexistence of solid-vapor, liquid-vapor, and solid-liquid interfaces

Drying Methods

To avoid cracking:

- No meniscus
- Decrease surface tension
- Increase wetting angle (isopropanol)
- Increase pore size
- Make a stiff gel

1. Supercritical drying – fluid state (= aerogel)

 $2\gamma\cos\theta$

2. Freeze-drying - solvent substitution in the pores by another with high sublimation pressure and low expansion coefficient (= cryogel)

3. Ambient drying Surface modification by drying-control chemical additives - silylation by trimethylchlorosilane

- 4. Large pore gels
- 5. Ageing stiffening

Aerogels

1931 Steven S. Kistler J. Phys. Chem. 34, 52, 1932

Aerogels = materials in which the typical structure of the pores and the network is largely maintained while the pore liquid of a gel is replaced by air

The record low density solid material - 10 mg/cm³ Density of air - 1.2 mg/cm³

Aerogels - Supercritical Drying

Silica aerogel

- Wet gel is prepared
- Byproducts, salts, water washing
- Water replacement with acetone
- Loading to autoclave
- Supercritical drying

Supercritical Drying

Cold supercritical drying path in the Pressure (P) Temperature (T) phase diagram of CO₂

- The gel containing excess amount of solvent (e.g., acetone) is placed in an autoclave
- Liquid CO₂ is pumped in at 4-10°C until the p = 100 bar (step 1)
- The solvent extracted by the liquid CO₂ is drained

- The temperature is raised to 40 $^{\circ}\text{C}$ aboveT_c of CO_2 (step 2)

- The fluid is slowly vented at constant T, resulting in a drop in p (step 3)

- At ambient pressure, the system is cooled down to the room temperature (step 4)

Common ceramic and metallurgic manufacturing process A process of bonding, densification and/or recrystallization of powder compacts

A treatment in which a green body is converted to a strong monolith

Thermal (solid-state) sintering

A powder pressed into a highly porous pellets 50-60 % of the maximum theoretical density = green pellets Heating, the pellet densifies, reducing surface area and surface energy of individual particles without reaching melting point Sintering time - several hours to several days

Other methods of sintering:

- Liquid-phase sintering
- Microwave sintering •
- Spark-plasma sintering
- Oxidative sintering
- **Pressure-assisted sintering**

Control of sintering by sintering parameters: temperature, pressure, time,

atmosphere

Sintering - self-diffusion of atoms in the crystal lattice

Atoms diffuse randomly through the lattice by moving into adjacent vacant lattice sites = vacancies A vacant lattice site increases the energy of the lattice

Atoms on the surface of particles have higher energies than the atoms in the interior - energy is lower if the particle is in contact with another particle of the same material than if it is in contact with the atmosphere or a different material

The lattice sites that increase the contact area between particles are preferred = around the edges of the contact area

Atoms move out of the bulk and to the contact area = vacancies are created within the bulk

The overall energy change - the difference of the energy reduced by increasing the surface area and the energy increased by creating a vacancy = the sintering stress

The magnitude of the sintering stress depends on the contact angle between the particles = the dihedral angle ψ

As the contact area increases the dihedral angle widens

Eventually it reaches a wide enough angle that the sintering stress is zero and sintering stops = the equilibrium dihedral angle ψ_e

Because of the limit on the dihedral angle, it is possible for sintering to reach equilibrium with pores still present in the material

The rate of sintering is controlled by the diffusion rate and sintering stress

The diffusion rate is affected by the defect concentration and temperature

More defects = more atoms can diffuse simultaneously High temperatures = atoms to diffuse faster = sintering is done at high temperature

Sintering Mechanisms

Sintering mechanisms - solid, liquid, gas phase

- 1. Evaporation-condensation and dissolutionprecipitation
- 2. Volume diffusion viscous flow (amorphous)
- 3. Surface diffusion
- 4. Grain boundary diffusion
- **5. Volume diffusion from grain boundaries**
- 6. Volume diffusion of dislocations plastic flow

Sintering Mechanisms

Figure : Curvature in solids, and their effect on vapor pressure

Figure : Curvature in solids, and their effect of vacancy concentration

Stage 1

The particles increase their contact areas through the formation of necks, it ends once neck growth ceases to be the major mechanism

Stage 2

The overall density increases as the pores decrease in size The contact areas grow into planes = grain boundaries The pores become columnar in shape as they shrink into tunnel systems on grain boundaries and triple junctions

Stage 3

The pores become closed off to the surface Grain boundary motion begins as the lattice continues to decrease its overall energy by decreasing the surface area between grains Large grains grow at the expense of smaller grains

Figure 5. Transmission Electron Microscopy (TEM) images of AY materials. (a) Un-milled powder, sintered at 1600 °C/3 h; (b) Milled powder sintered at 1420 °C/3 h. Characters A and Y refer to α -Al₂O₃ (black grains) and YAG (white grains), respectively.

Densification

Densification process

Stage I. Below 200 °C, weight loss, no shrinkage

Desorption of liquid from pore surface

Stage II. 150 - 700 °C, both weight loss and shrinkage

Loss of organics - weight loss Further condensation - weight loss and shrinkage Structural relaxation - shrinkage

Stage III. Above 500 °C, no more weight loss, shrinkage only

Close to glass transition temperature, viscous flow, rapid densification, large reduction of surface area, reduction of interfacial energy, termodynamically favored

Densification - Sintering

Generalized Sintering Curve

SPS/FAST – Spark Plasma Sintering

- Field assisted sintering technique
- No spark, No plasma
- Pulsed electric current sintering
- High pressure limitation by high temperature fracture strength
- Graphite 100-150 MPa, WC or SiC 1GPa
- High temperature up to 2400 °C
- Joule heating resistence at contact points
- Up to 10 V, current 10 kA
- Extreme heating rates: 1000 K/min
- Near theoretical density at lower sintering temperature compared to conventional sintering techniques

