Zeolites and Zeolitic Materials

Molecular sieves = highly organized matrices of tunable pore shape, size, and polarity for separation, recognition, and organization of molecules with precision of about 1 Å

IUPAC classification of porous materials

Macroporous > 50 nm Mesoporous 2–50 nm Microporous < 2 nm Ultramicroporous < 0.7 nm

Applications: detergent builders, adsorbents, size-shape selective catalysts, supramolecular chemistry, nanotechnology STEM ADF

1

Chemical composition

Silica Aluminosilicates Aluminophosphates Metallophosphates Silicoaluminophosphates $\begin{array}{l} SiO_2 \\ M_x{}^lAI_xSi_{2-x}O_4 \ . \ nH_2O \\ AIPO_4 \ (isoelectronic \ with \ Si_2O_4) \\ MPO_4 \\ M_x{}^lSi_xAIP_{1-x}O_4 \end{array}$

ACO

SSY

Pores and Channels

STI

-CLO

AFI

Zeolite Types

>60 naturally occurring zeolites - large deposits of analcime, chabazite,

clinoptilolite, erionite, mordenite and phillipsite >253 zeolite framework types (IZA - 2020) many hundreds of synthetic zeolite compounds Nomenclature http://www.iza-structure.org/ Structure types - three capital letter codes Most well known zeolite archetypes: SOD, LTA, FAU, MOR, MFI

Aluminium Cobalt Phosphate - 1 (One) = ACO

• Four-connected (4c) frameworks (over 1 000 000 possible 4c frameworks)

Interrupted frameworks (denoted by a hyphen: –CLO, cloverite)
 Structure types do not depend on: chemical composition, element distribution, cell dimensions, symmetry

Several zeolite compounds can belong to the same structure type: FAU – faujasite, Linde X, Y, Beryllophosphate-X, SAPO-37, Zincophosphate-X

Zeolite Names

Names of zeolite materials:

- Trivial names Alpha, Beta, Rho
- Chemical names Gallogermanate-A
- Mineral names Chabazite, Mordenite, Stilbite, Sodalite
- Codes AIPO4-5, 8, 11, ..., 54, ZSM-4, 18, 57, ...
- Brand names Linde A, D, F, L, N, Q, R, T, W, X, Y

University names

VPI-5 (Virginia Polytechnical Institute) ULM-x (University Le Mans) MU-n (Mulhouse, Université de Haute Alsace)

Zeolites Building Units

Primary building units = tetrahedra Al(III)O₄, P(V)O₄, Si(IV)O₄ and MO₄

Isoelectronic relationship

 $(SiO_2)_2$ [AISiO₄]⁻ AIPO₄

Secondary (Structural) Building Units (SBU)

D4R = double four-ring (= 8 T-atoms, Al, Si, P,...)

Framework Type ACO

Polyhedral Composite **Building Units**

144 double 4-ring (D4R)

 $[4^{6}6^{2}]$ clouble 6-ring (D6R)

 $[4^{8}8^{2}]$ double S-ring (DISR)

[5⁶] pentasil unit

[4⁴6⁵] cencrinite cage

Truncated octahedra [4⁶6⁸] sodalite- or β -cages)

Truncated cubeoctahedra [4¹²6⁸8⁶] (α-cavities)

Chain Composite Building Units

- (a) zig-zag unbranched single chain, periodicity of two
- (b) sawtooth unbranched single chain, periodicity of three
- (c) crankshaft unbranched single chain, periodicity of four
- (d) natrolite branched single chain
- (e) double crankshaft chain, an unbranched double chain
- (f) narsarsukite chain, a branched double chain
- (g) a pentasil chain

Sodalite Unit

Sodalite cage = Truncated octahedron

Truncated octahedra [4⁶6⁸] sodalite- or β-cages)

Truncated cubeoctahedra [4¹²6⁸8⁶] (α-cavities)

Sodalite Unit

Packing of the sodalite (β-cage) units:
SOD – bcc, sharing of 4-rings
LTA – sc, 4-rings connected through O bridges
FAU (faujasite) – cubic diamond, 6-rings connected through O bridges
EMT – hexagonal diamond, 6-rings connected through O bridges

Building Units in Zeolite A (LTA)

(f)

- (a) [TO₄] tetrahedra as primary BU
- (b) Four-rings 4R SBU
- (c) IB fuenfer chains
- (d) Cubes D4R [4⁶] SBU
- (e) Truncated octahedra [4⁶6⁸] (sodalite- or β -cages)
- (f) Truncated cubeoctahedra [$4^{12}6^{8}8^{6}$] (α -cavities)

Pores and Channels in Zeolite A (LTA)

- (a) the sodalite β -cage [4⁶6⁸]
- (b) the α -cavity [4¹²6⁸8⁶]
- (c) the 3-dimensional channel system
- (d) the 8-ring defining the 0.41 nm effective channel width

AFM growth studies of LTA

S. Sugiyama et. al. Microporous and Mesoporous Materials 28 (1999) 1–7

HRTEM of a Zeolite A (LTA) Crystal

Zeolite A crystal in an amorphous gel particle after a synthesis time of 3 days at room temperature

Zeolite FAU (X and Y) and EMT

Fig. 1. Structure of zeolite Y: (a) cubic polymorph known as FAU with ABCABC... stacking, (b) hexagonal polymorph known as EMT with ABABAB... stacking.

FAU				
Cubic	ABCABC stacking of layers agent	analagous to zinc blende	15-crown-5 structure directing agent	
EMT				
Hexagonal	ABABAB stacking of layers	analagous to wurtzite	18-crown-6 structure directing agent	

Zeolite FAU (X and Y) and EMT Sodalite β -cage = carbon atom

Cubic diamond (sfalerite)

Hexagonal diamond (wurzite)

Molecular Sieves

Zeolite A = LTA Zeolite X and Y = FAU

Zeolite Cation Code Pore diameter

Α	Na	4A	0.42 nm
	Ca	5A	0.48 nm
	Na, K	3A	0.38 nm

- X Na 13X 0.8-1.0 nm Ca 10X 0.7 nm
- Y as X, contains more Si

Framework Density

Framework density (FD)

FD = the number of tetrahedral atoms (T-atoms = Si, Al, P,...) per cubic nanometer (1000 Å³)

FD is related to the void volume of the crystal: as the FD value decreases, the void volume and capacity for adsorption increases

FD < 20 are characteristic of microporous structures the minimum known FD is 12.5 with the void occupying just over half of the crystal volume

Pores

Various sizes (4 - 13 Å), shapes (circular, elliptical, cloverleaf-like), and connectivity (1-3D) The size of the rings formed by the TO_4 tetrahedra ranges from 4 to 18 of the T-atoms and determines the pore aperture

Extraframework charge-balancing cations lon-exchangeable, size, charge, positions, distribution, ordering, coordination number

Si-to-Al ratioInfluences cation content, hydro-phobicity/-philicity, acidityLöwenstein rule:absence of the Al-O-Al moieties, in aluminosilicatesSi/Al > 1Linde A (LTA)Si/Al = 1ZK-4 (LTA)Si/Al = 2.5ZSM-5Pure SiO2Si/Al = ∞

Zeolite Synthesis

Synthesis - an empirical and heuristic process, new phases are often discovered by serendipity

Aluminosilicates – at high pH

A Mixing of precursors

 $NaAl(OH)_4(aq) + Na_2SiO_3(aq) + NaOH(aq), 25 °C$ Condensation-polymerization, gel formation

Ageing of gel

 $Na(H_2O)_n^+$ template effect $\rightarrow Na_a(AIO_2)_b(SiO_2)_c$.NaOH.H₂O (gel) at 25-175 °C

Na_x(AlO₂)_x(SiO₂)_y.zH₂O (microcrystals)

Separation of the solid product by filtration

Calcination

- occluded water, removed by 25-500 °C vacuum thermal dehydration

- template removal – calcination in O_2 at 400-900 °C removes the guest molecules from the framework without altering it

Extraction (neutral templates)

Zeolite Synthesis

Structure of the zeolite product depends on many reaction parameters:

- Composition, precursors
- Concentrations and reactant ratios
- Order of mixing
- Temperature
- Ageing time (hours to weeks)
- Crystallization time (days to weeks, kinetics of the structure-directing process is slow)
- pH
- Stirring/no stirring
- Pressure
- Seeding
- Reactor material (PTFE, glass, steel)
- Templates

Templates: Inorganic cations (Na⁺), organic cationic quaternary alkylammonium salts, alkylamines, aminoalcohols, crownethers, structure-directing, spacefilling, charge-balancing

Templates

Templates or guest compounds – **Structure directing agents (SDA)** Three levels of the guest action with increasing structure-directing specificity:

■ Space-filling - the least specific, observed, e.g., in the synthesis of $AIPO_4$ -5: 23 different, structurally unrelated compounds, could be employed, packing in the channels thereby increasing its stability

■ Structure-directing - a higher degree of specificity, only tetramethylammonium hydroxide is effective in the synthesis of AIPO₄-20

- elongated molecules, such as linear diamines, initiate the formation of channels

- nondirectional-shaped guests leads to the formation of cage-like cavities, the size of these cavities correlates with the size of freely rotating guests

■ True templating - very rare, it requires even more precise hostguest fit which results in the cessation of the free guest-molecule rotation

A curiosity: aluminophosphate VPI-5 does not require any guest for its formation!

Hol

NH₂

Templates

The ratio $TO_2/(C + N + O)$ is a measure of space-filling of the framework by the guest molecules, characteristic for a specific guest and structure

Existence of primary and secondary units in a synthesis mixture

4R, 6R, 8R, D4R, D6R, 5-1, cubooctahedron

Zeolite Synthesis Mechanisms

Structure directing agents (SDA)

(1) Formation of hydrogen bonds / charge attraction between the structure directing agent (SDA) and the silicates present in the synthesis solution

(2) Oligomerisation of silicates to primary units (2-3 nm)

(3) Condensation of the silicate-SDA species to give the first stable crystalline nuclei (10 nm)

(4) Crystal growth (10-100 μ m)

Zeolite Synthesis Mechanisms

Crystallization Mechanism

Crystallization kinetics of zeolite formation

Zeolites

Wide range of solid state characterization methods for zeolites: diffraction, microscopy, spectroscopy, thermal, gas adsorption

Zeolite post modification for controlling properties of zeolites

Tailoring channel, cage, window dimensions:

+Cation choice (Ca²⁺ exchanged for Na⁺)

+Larger Si/Al

decreases unit cell parameters, window size decreases number of cations, free space increases hydrophobicity

+Reaction temperature, higher T, larger pores

+ Stability Rules

- Lőwenstein rule - the principle of aluminium avoidance: never AI-O-AI

- Dempsey rule: AI-O-Si-O-Si-O-AI is more stable than AI-O-Si-O-AI, negative charges at AI as far as possible

- NNN-principle: minimalization of AI-AI-next-nearest neighbor interactions

Cation Positions

Several extra framework sites are occupied by cations in faujasites (FAU)

A standard nomenclature:

I at the center of the double 6-rings I' in the sodalite cage, adjacent to a hexagonal ring shared by the sodalite cage and a double 6-ring II in the supercage, adjacent to an unshared hexagonal face of a sodalite cage II' in the sodalite cage, adjacent to an unshared hexagonal face III is located on the walls of the supercage

Applications of Natural Mineral Zeolites

Aquaculture - Ammonia filtration in fish hatcheries - Biofilter media Agriculture - Odor control - Confined animal environmental control Livestock feed additives Horticulture - Nurseries, Greenhouses Floriculture - Vegetables/herbs - Foliage **Tree and shrub transplanting** Turf grass soil amendment **Reclamation, revegetation, landscaping** Silviculture (forestry, tree plantations) Medium for hydroponic growing Household Products - Household odor control - Pet odor control Industrial Products - Absorbents for oil and spills - Gas separations **Radioactive Waste - Site remediation/decontamination** Water Treatment - Water filtration - Heavy metal removal - Swimming pools - Wastewater Treatment - Ammonia removal in municipal sludge/wastewater Heavy metal removal - Septic leach fields

Applications of Synthetic Zeolite

Production 1.6 million tons p.a. (about half that of natural zeolites)

Detergents - water softening by ion exchange (82 %) - zeolites A and X

Desiccants/absorption (5 %) - zeolites A, X, Y and mordenite

Host-guest inclusion, atoms, ions, molecules, radicals, organometallics, coordination compounds, clusters, polymers (conducting, insulating)

Nanoreaction chambers (ship-in-a-bottle)

Advanced zeolite devices, electronic, optical, magnetic applications, nanoscale materials, size tunable properties, QSEs

Heterogeneous catalysts (8 %) - zeolite Y (faujasite, 96 wt.%), mordenite, ZSM-5, zeolite Beta

Brønsted Acidity

Solid acid catalysts for the hydrocarbon cracking

Introducing Bronsted acidity into zeolites:

- (1) direct H⁺-exchange of the charge-compensating metal cations
- (2) NH₄⁺ -exchange of the compensating metal cations followed by calcination to decompose the ammonium cation leaving a proton on the surface
- (3) exchange with polyvalent cations that can generate H⁺ via partial hydrolysis of H₂O molecules
- (4) exchange by metal cations that can be reduced by H_2 to a lower valence state, generating protons on the surface ₃₃

Brønsted Acidity

Tuning Brønsted acidity:

- Ion exchange for NH₄⁺
- Pyrolysis to expel NH₃
- Calcination to expel H₂O

Solid acid for the hydrocarbon cracking

The larger the Si/Al ratio of a zeolite, the more Brønsted acidic is the OH, but the number of these sites decreases

Strong Brønsted Acidity

Protonation of benzene

Brønsted Acidity

Figure 1. Portions of the structures calculated for the π complex of isobutene in ferrierite (2), for the *tert*-butyl cation in ferrierite (4), and for the *tert*-butoxide (3) and isobutoxide (5) of ferrierite.

Brønsted Acidity

IR vibrations for OH groups located at different sites in FAU

(• = lattice oxygens)

3648 cm⁻¹ site 1 (pointing to the supercage) 3625 cm⁻¹ site 1' or 4 (pointing to the supercage) 3571 cm⁻¹ site 2 (pointing to the sodalite cage) 3526 cm⁻¹ site 3 (pointing to the hexagonal prism) 3744 cm⁻¹ free terminal OH at the external surface

Size-Shape Selectivity

Size-shape selective catalysis, separations, sensing

Selectivity at:

- Reactants
- Products
- Transition state

38

Fluid Catalytic Cracking (FCC)

Size-shape selective catalysis of hexane cracking MSE zeolite - framework with 3-dimensional 10-MR or 12-MR micropores Si/AI = 51

High selectivity to propylene, low coking

Gas Separation by Zeolites

Separation of xylene isomers by pervaporation through a MFI membrane

Aluminophosphates

+Isoelectronic relationship of $AIPO_4$ to $(SiO_2)_2$

+ Ionic radius of Si⁴⁺ (0.26 Å) is very close to the average of the ionic radii of AI³⁺ (0.39 Å) and P⁵⁺ (0.17 Å)

Many similarities between aluminosilicate and $AIPO_4$ molecular sieves Dense $AIPO_4$ phases are isomorphic with the structural forms of SiO₂: quartz, tridymite, and cristobalite

Aluminosilicate framework charge balanced by extraframework cations

Aluminophosphate frameworks neutral $(AIO_2^{-})(PO_2^{+}) = AIPO_4$

Aluminophosphates

Some AIPO₄ structures are analogous to zeolites while other are novel and unique to this class of molecular sieves

Only even-number rings = the strict alternation of AI and P atoms

Incorporation of elements such as Si, Mg, Fe, Ti, Co, Zn, Mn, Ga, Ge, Be, Li, As, and B into the tetrahedral sites of AIPO₄ gives a vast number of element-substituted molecular sieves (MeAPO, MeAPSO, SAPO) important heterogeneous catalysts M¹⁺, M²⁺, and M³⁺ incorporate into the AI sites M⁵⁺ elements incorporate into the P sites

This substitution introduces a negative charge on these frameworks

Si⁴⁺, Ti⁴⁺, and Ge⁴⁺ can either replace P and introduce a negative charge or a pair of these atoms can replace an AI/P pair and retain the charge neutrality ⁴²

Aluminophosphates

Aluminophosphate Synthesis

Aluminophosphates prepared by the hydrothermal synthesis Source of AI: pseudoboehmite, AI(O)(OH), $AI(Oi-Pr)_3$

Mixing with aqueous H_3PO_4 in the equimolar ratio – low pH ! Forms an AIPO₄ gel, left to age One equivalent of a guest compound = template Crystallization in a reactor Separated by filtration, washed with water Calcination

Other zeolite materials

Oxide and non-oxide frameworks, sulfides, selenides Coordination frameworks, supramolecular zeolites The quest for larger and larger pore sizes

Cobalto-Aluminophosphate

ACP-1 (Co/AI 8.0)

bcc arrangement of the double 4-ring units (D4R) Ethylenediamine molecules are located inside 8-ring channels At the centre of each D4R, there is a water molecule, 2.31 Å away from

four metal sites

ACO

Al(O-iPr)₃, CoCO₃.H₂O, 85% H₃PO₄, ethylene glycol, ethylenediamine, pH 8.4 Heated in a Teflon-coated steel autoclave at 180 °C for 4 d 45

Synthesis of Double 4-ring Units (D4R)

Connect the double 4-ring units (D4R)

ACO

Metallo-Organic Framework (MOF) Structures

20 000 structures known (2019), 1000 new per year

Porous coordination polymers (PCP)

Metal centers

- Coordinative bonds
- Coordination numbers 3-6
- Bond angles

Polytopic Ligands

- Organic spacers
- Flexible rigid
- Variable length
- Directionality

Reticular Chemistry

A building-block approach to the synthesis of nanostructured materials

Materials formed by a bottom-up self-assembly of building blocks (reticuli) with predetermined symmetry

Targeted, predictable, and straightforward design and synthesis Chemistry of the self-assembly and the design should not interact

Building blocks:

- Discrete symmetry: C_{∞} , C_2 , C_3 , C_4 , T_d
- Rigid, inert
- Functional groups for linking
- Suitable linking reaction
- Discrete bonding direction

Reticular Chemistry

49

Basic Nets

Polytopic Organic Linkers

- N-based polydentate donors
- Carboxylates

Polytopic N-bound Organic Linkers

Cationic framework structures Evacuation of guests within the pores usually results in collapse of the host framework

Metallo-Organic Framework Structures

Polytopic Carboxylate Linkers

Polytopic Carboxylate Linkers

Aggregation of metal ions into M-O-C clusters

- form more rigid frameworks
- frameworks are neutral
- no need for counterions

Inorganic Secondary Building Units (SBUs)

(a) the square "paddlewheel", with two terminal ligand sites
(b) the octahedral "basic zinc acetate" cluster
(c) the trigonal prismatic oxo-centered trimer, with three terminal ligand sites

The SBUs are reticulated into MOF by linking the carboxylate carbons with organic units or by replacement of the terminal ligands

Inorganic Secondary Building Units (SBUs)

PCN-700

MIL-53

Organic Secondary Building Units (SBUs)

(d) square tetrakis(4-carboxyphenyl)porphyrin
(e) tetrahedral adamantane-1,3,5,7-tetracarboxylic acid
(f) trigonal 1,3,5-tris(4-carboxyphenyl)benzene

MOF Crystallization

Entropy-driven errors in self-assembly Mechanism for error correction required The reaction should be reversible to allow for thermodynamic control No side-reactions should exist (loss of reagents, contamination) The building block rigidity, symmetry and discrete bonding direction decrease the incidence of errors Solvothermal methods – control over p, T, μ – to establish equilibrium

Isoreticular Metal-Organic Frameworks (IRMOFs)

The same cubic topology, the links differ both in functionality (IRMOF-1 to -7) and in length (IRMOF-8 to -16), expansion of the links increases the internal voidspace (yellow spheres), it also allows the formation of catenated phases (IRMOF-9, -11, -13, and -15)

Isoreticular Metal-Organic Frameworks (IRMOFs)

Organic linkers for IRMOFs-X

MOF-5

 $Zn_4O(BDC)_3.(DMF)_8(C_6H_5CI)$

Synthesis

- Zn(NO₃)₂ + H₂BDC in DMF/PhCI
- Addition of TEA: deprotonation of H₂BDC С

а

Addition of Zn²⁺

• Addition of H₂O₂: formation of O²⁻ in the cluster center = Zn_4O

Cavity diam. 18.5 Å

Nature, 1999, 402, 276

a primitive cubic lattice

Metal-Organic Framework MOF-5

Interpenetration

Inorganic and Metallo-Organic Quartz

Linking reactions

Solvents - reactants are poorly soluble (to slow down the reversible condensation) mesitylene-dioxane (1:1)

Sealed pyrex tubes, 110 °C, 72 h, minimize defects by self-healing

COF-1 = microcrystalline, high yield, high structural order by XRD

Solvent molecules are enclosed inside the pores, can be removed at 200 °C without collapse of the crystalline structure Surface area of 711 m² g⁻¹, pore size 0.7 nm

Interlayer spacing: 0.333 nm

72
Covalent Organic Frameworks

Layer stackings: AA, AB, serrated and inclined

Covalent Organic Frameworks

3D frameworks COF-102, COF-103, COF-105, and COF-108

COF-108 - bor structure two different types of pores diameters of 15.2 and 29.6 Å density 0.17 g cm⁻³

Surface area, m² g⁻¹ COF 102 3472 COF 103 4210

Covalent Organic Frameworks

Borazine COFs

Jackson K., Reich T., *Chem. Commun.*, **2012**, 48, 8823–8825

Pore size: 0.64 nm