Inorganic Materials Chemistry Jiri Pinkas Office C12/224

Phone 549496493 Email: jpinkas@chemi.muni.cz

 Lectures: PowerPoint presentations with recorded talk uploaded in the IS MU

Course grading:

- 3 graded homeworks during semester
- Short presentations on a selected topic concerning materials chemistry

• Written final **exam** (100 pts, minimum 50 pts to pass) Grading weights: final test 75%, homeworks 15%, presentation 10%.

Recommended Literature

SCHUBERT, U., HÜSING, N., Synthesis of Inorganic Materials. Weinheim: Wiley-VCH

CALLISTER, W.D.J., Materials Science and Engineering, An Introduction. John Wiley and Sons

SMART, L., MOORE, E., Solid state chemistry : an introduction. 2nd ed. London: Chapman & Hall

INNOCENZI, Plinio, The Sol to Gel Transition, Springer International Publishing

WHITE, Mary Anne, Physical Properties of Materials, 2nd Edition, CRC Press

MUELLER, Ulrich, Inorganic Structural Chemistry, 2nd Edition, Wiley

Recommended Literature

OZIN, G.A., ARSENAULT, A.C., CADEMARTIRI, L., Nanochemistry : a chemical approach to nanomaterials. 2nd ed. Cambridge: RSC Publishing, 2009.

CADEMARTIRI, L., OZIN, G.A., Concepts of nanochemistry. Edited by Jean-Marie Lehn. Weinheim: Wiley-VCH, 2009.

FAHLMAN, B. D. Materials Chemistry. Springer 2018.

LOWELL, S., SHIELDS J. E., Martin A. THOMAS, M. A., THOMMES, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer 2004.

MITTEMEIJER, E. J. Fundamentals of Materials Science. Springer 2011.

Materials in Human History

Historical perspective:

New materials bring advancement to societies

- Stone age
- Bronze age
- Iron age
- Silicon age

Crescent Axes. The top Syrian, the bottom Egyptian. about 1900 BC 4

Materials in Human History

- 50 000 B.C. Iron oxide pigments Lascaux, Altamira
- 24 000 B.C. Ceramics fat, bone ash, clay
- 3 500 B.C. Cu metallurgy

Glass, Egypt and Mesopotamia

- 3 200 B.C. Bronze
- 1 600 B.C. Iron metallurgy, Hittites
- 1 300 B.C. Steel
- **1 000 B.C.** Glass production, Greece, Syria
- 105 B.C. Paper, China
- 590 A.D. Gun powder, China
- 700 A.D. Porcelain, China

Materials in Human History -Metals

FIG. 11.--EGYPTIAN GOLDSMITHS WASHING, MELTING AND WEIGHING GOLD, BENI HASAN, 1900 B.C.

6

Materials in Human History -**Ceramics**

Development of Materials in Human History

Compounds vs. Materials

- * Chemical compounds single use (pharmaceuticals, fertilizers, fuels)
- * Materials repeated or continual use - shaping

Shaping of Macro and Micro Materials

Ceramics Glasses Metals, Alloys Polymers Composites Semiconductors

Shaping of Nanomaterials

Classes of Materials

Ceramics (oxides, carbides, nitrides, borides) Glasses (oxides, fluorides, chalcogenides, metallic) Metals, Alloys, Intermetallics **Polymers - inorganic, organic, hybrid** Semiconductors (Si, Ge, 13/15, 12/16 compounds) **Composites, Inorganic-Organic Hybrid Materials Zeolites, Layer and Inclusion Materials Biomimetic Materials, hydroxyapatite**

Carbon-based Materials: Fullerenes, Fullerene Tubes, Graphene 12

Three Classical Classes of Materials

Metals	Ceramics	Polymers
Strong	Strong	Usually not strong
Ductile	Brittle	Very ductile
Electrical Conductor	Electrical Insulator	Electrical Insulator
Heat Conductor	Thermal Insulator	Thermal Insulator
Not transparent	May be transparent	Not transparent
Shiny	Heat Resistant	Low Densities

Properties of Materials

A property = a material trait, the kind and magnitude of response to a specific stimulus

Properties

Mechanical Electrical Thermal Magnetic Optical Deteriorative (corrosion) Catalytic Biocompatibility

Materials Science:

Studies relationships between the structure and properties of materials

Materials Engineering:

Designing and engineering the structure of a material to produce a predetermined set of properties

Materials Chemistry

Role of Materials Chemistry

- Synthesis of new materials new atom architecture
- Preparation of high purity materials
- Fabrication techniques for tailored morphologies (shapes and sizes)
- Fabrication of functional materials

Size of Particles

Nanoparticles 1 – 100 nm Traditional materials > 1 mm

1µm

2µm

Shapes of Natural and Synthetic Single Crystals

Calcite CaCO₃

100 µm

Cu-Ag nanoalloy

____10 μm

Onion-Like Particles

Functional Materials Synthesis of porous SiO₂ nanospheres (8)HO. OH hydrolysis. condensation. 200nm (b) organic phase 00 0 water. n Patrick 2 µm

CB[6] = cucurbit[6]uril

ertactary.

Dynamic wagging motion by Z-E interconversion

00n

Functional Materials

Dual-controlled nanoparticles exhibiting AND logic function

(a) Excitation with 448 nm light induces the dynamic wagging motion of the nanoimpellers, but the nanovalves remain shut and the contents are contained

(b) Addition of NaOH opens the nanovalves, but the static nanoimpellers are able to keep the contents contained

(c = a + b) Simultaneous excitation with 448 nm light AND addition of NaOH causes the contents to be released

CB[6] = cucurbit[6]uril

Functional Materials - Si₃N₄ Si

Hexagonal

α modification

 β modification

- Strong covalent bond (4.9 eV)
- Hardness (a-monocrystal, Vickers 21 GPa)
- Tensile Strength 1.5 GPa (β-whisker)
- Young modulus 350 GPa
- Decomposition temp. 1840 °C/1 atm N₂
- Density 3.2 g cm⁻³

N

Si₃N₄ Ceramics

Microstructure of Materials

Microstructure vs. Properties

Materials Chemistry

Single crystals, defects, dopants, non-stoichiometry **Monoliths** Coatings Thin or thick films - singlecrystalline, polycrystalline, amorphous, epitaxial Fibers, Wires, Tubes **Powders – primary particles, aggregates, agglomerates** polycrystalline, amorphous, nanocrystalline (1-100 nm) **Porous materials** micropores (< 20 Å), mesopores (20-500 Å), macropores (> 500 Å) **Micropatterns** Nanostructures – spheres, hollow spheres, rods, wires, tubes, photonic crystals Self-assembly – supramolecular chemistry: rotaxenes, catenanes, cavitands, carcerands

Self-Assembling Monolayers

STM on HOPG

Materials Chemistry Tool Box

Direct reactions of solids – "heat-and-beat"

Precursor methods

Chimie douce, soft-chemistry methods, synthesis of novel metastable materials, such as open framework phases

Ion-exchange methods, solution, melt

Intercalation: chemical, electrochemical, pressure, exfoliation-reassembly

Crystallization techniques, solutions, melts, glasses, gels, hydrothermal, molten salt, high P/T

Vapor phase transport, synthesis, purification, crystal growth, doping

28

Materials Chemistry Tool Box

Electrochemical synthesis, redox preparations, anodic oxidation, oxidative polymerization

Preparation of thin films and superlattices, chemical, electrochemical, physical, self-assembling mono- and multilayers

Growth of single crystals, vapor, liquid, solid phase chemical, electrochemical

High pressure methods, hydrothermal, diamond anvils

Combinatorial materials chemistry, creation and rapid evaluation of gigantic libraries of related materials

STEM - Imaging at Nanoscale

a) 2D EDX map of a Au@Ag nanocube. Based on a tilt series of 2D EDX maps the 3D reconstruction presented in (b) was obtained. The contrast in the 3D reconstruction is based on differences in chemical composition and it is clear that the core of the particle has an octahedral form.

TEM - Atomic Scale Imaging

Atomic scale reconstruction of Au nanorods. a,b) Orthogonal slices through the atomic scale reconstruction of Au nanorods prepared using different surfactants. The side facets of these rods can be clearly recognized. c) Strain measurement along the major axis of the nanorod.