# **Mesoporous Materials**

#### **TEM** image of the Pd-grafted mesoporous silicate material



1

# **IUPAC Classification of Porous Materials**



# **Mesoporous Materials**

- Disordered, amorphous silica xerogels
- Ordered pores, amorphous walls (MCM, SBA)

| Pore diameter, <b>d</b><br>[nm] | Material    | Example                  |  |
|---------------------------------|-------------|--------------------------|--|
| <b>d</b> > 50                   | Macroporous | Aerogels, foams          |  |
| 2 < <b>d</b> < 50               | Mesoporous  | Xerogels, MCM-41, SBA-15 |  |
| <b>d</b> < 2                    | Microporous | Zeolites, MOF, COF       |  |



# **Nomenclature of Mesoporous Materials**

M41S - Group name of mesoporous MCM materials by Exxon Mobil (MCM = **Mobil Crystalline Materials or Mobil Composition of Matter)** 

**MMS - Mesoporous Molecular Sieves** 

- **OMS Ordered Mesoporous Silicas**
- A hexagonal 1D channels, **MCM-41, SBA-15**

B - cubic 3D channel structure (bicontinuous), MCM-48, KIT-6

- C FCC 3D channels, FDU-12
- D BCC 3D channels, SBA-16
- E Lamellar, 2D layers, MCM-50

- US pat. 1971 forgotten ٠
- Kuroda, Japan 1990
- Independently rediscovered, • pattented and published 1992 by Exxon Mobil





(b) Bicontinuous cubic gyroid (Ia3d), Example: MCM-48, KIT-6





(e) Lamellar. Example: MCM-50

| MSN Family | MSN Type | Pore Symmetry        | Pore Size (nm) | Pore Volume (cm <sup>3</sup> /g) |
|------------|----------|----------------------|----------------|----------------------------------|
| M41S       | MCM-41   | 2D hexagonal P6mm    | 1.5-8          | >1.0                             |
|            | MCM-48   | 3D cubic Ia3d        | 2-5            | >1.0                             |
|            | MCM-50   | Lamellar p2          | 2-5            | >1.0                             |
| SBA        | SBA-11   | 3D cubic Pm3m        | 2.1-3.6        | 0.68                             |
|            | SBA-12   | 3D hexagonal P63/mmc | 3.1            | 0.83                             |
|            | SBA-15   | 2D hexagonal p6mm    | 6-0            | 1.17                             |
|            | SBA-16   | Cubic Im3m           | 5-15           | 0.91                             |
| KIT        | KIT-5    | Cubic Fm3m           | 9.3            | 0.45                             |
| COK        | COK-12   | Hexagonal P6m        | 5.8            | 0.45                             |

# **Nomenclature of Mesoporous Materials**

MCM - Mobil Crystalline Materials SBA - Santa Barbara Amorphous KIT - Korea Advanced Institute of Science and Technology COK - Centre for Surface Chemistry and Catalysis, Leuven FDU - Fundan University MSU - Michigan State University



### **Pore Size Distribution**



## **Micelles - Supramolecular Templates**

In zeolitic materials, the template is a single molecule or ion – pores too small (micropores)

Self assembled aggregates of molecules or ions can also serve as templates – larger pores (mesopores)

Surfactants aggregate into a variety of structures depending on conditions (concentration, temperature, solvent,...)



# **Supramolecular Templating**

**Surfactants** = amphiphilic molecules, polar (head group) and nonpolar (chain, tail) part

Lyophilic and lyophobic

Ionic surfactants, cationic, anionic, zwitterionic

Nonionic amines, polyethyleneoxides

- A normal surfactant molecule
- B gemini
- C swallow tail





### **Types Surfactant Molecules**

#### **Cationic** *alkylammonium salts dialkylammonium salts*

Anionic

sulfates sulfonates phosphates carboxylates

#### **Noionic**

primary amines polyethyleneoxides triblock copolymers  $C_nH_{2n+1}(CH_3)_3NX, X = OH, CI, Br, HSO_4$  $(C_{16}H_{33})_2(CH_3)_2N^+Br^-$ 

 $C_nH_{2n+1}OSO_3^-Na^+$   $C_nH_{2n+1}SO_3H$   $C_nH_{2n+1}OPO_3H_2$  $C_nH_{2n+1}COOH$ 



9

## **Surfactant Molecules**

**Critical packing parameter – CPP** 

 $CPP = V_{\rm H} / a_0 I_{\rm c}$ 

 $V_H$  volume of the hydrophobic part,  $a_0$  surface area of the hydrophilic part,  $I_c$  critical chain length:

 $I_{\rm c} \le 1.5 + 1.265 \ n$  [Å]

*n* number of carbon atoms,  $I_c$  depends on the chain shape



# **Micellar Shapes**

A) sphere, B) cylinder/rod, C) planar bilayer/ lamellar, D) reverse micelles, E) bicontinuous phase, F) liposomes)



## **Supramolecular Templating**

Phase diagram of [(C<sub>16</sub>H<sub>33</sub>)N(CH<sub>3</sub>)<sub>3</sub>]Br cetyltrimethylammonium bromide (CTAB)



# Mechanism of the Mesoporous Material Formation

#### **Hexagonal MCM-41**

- Liquid Crystal Templating (LCT)
- Silicate Rod Assembly
- Silicatropic Liquid Crystals (SLC)
- Lamellar to Hexagonal Transformation



# Liquid Crystal Templating (LCT) Mechanism

- Formation of rod-like micelles (above CMC2)
- Assembly of rod-like micelles into hexagonal liquid crystal phase H1
- TEOS deposition in between rod-like micelles
- Hydrolysis and condensation to form solid amorphous walls of silica
- Template removal to form MCM-41



### **Silicate Rod Assembly Mechanism**

- Formation of rod-like micelles (above CMC2)
- Silicate deposition on the surface of micelles
- Silica/surfactant rods assemble to hexagonal arrays
- Silica condensation to solid amorphous walls
- Template removal to MCM-41



# Silicatropic Liquid Crystals (SLC) Mechanism

- Interaction/ion-exchange of surfactant and inorganic precursors
- Cooperative self-assembly of silicate/surfactant micelles below CMC2 !!
- Assembly to hexagonal liquid crystal phase
- Silica condensation to solid amorphous walls



# Lamellar to Hexagonal Transformation

- Ion Exchange of Na<sup>+</sup> for surfactant
- Folding of silicate layers

**Charge Density Matching** 





As condensation proceeds the charge on the silicate layer decreases

17

## **Precursor-Micelle Interactions**

#### **Electrostatic Interactions**

- a) S<sup>+</sup> I<sup>-</sup> I = silicate (Si-O<sup>-</sup>) S = trimethylammonium
- b) S<sup>-</sup> I<sup>+</sup> I = Fe<sup>2+</sup>, Fe<sup>3+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>, Mg<sup>2+</sup>, Mn<sup>2+</sup>, Pb<sup>2+</sup>, Al<sup>3+</sup> S = sulfonate
- c) S<sup>+</sup> X<sup>-</sup> I<sup>+</sup> I = silicate positive charge X = CI<sup>-</sup> S = trimethylammonium
- d) S<sup>-</sup> M<sup>+</sup> I<sup>-</sup> I = aluminate M = Na<sup>+</sup> S = phosphate



### **Precursor-Micelle Interactions**



#### **Covalent Bond**

a) S-I I = niobate, tantalate S = ammine

# **EISA = Evaporation-Induced Self-Assembly**



**Critical parameters** 

- Molar ratio of Surfactant/Inorganic precursor
- Amount of water
- Volatile cosolvent content (EtOH, THF,...)
- Temperature
- Relative humidity



Surfactant chain length - increasing the chain length = bigger pores

Swelling agents – an organic additive, such as trimethylbenzene, enters the surfactant assembly (micelle) = bigger pores

Post synthetic modification - after a material has been made the pore size can be reduced by modifying the interior surface = smaller pores

**MCM-41** 



Prepared with Mesitylene Addition

Surfactant chain length - increasing the chain length = bigger pores



XRD

Swelling agents – an organic additive, such as trimethylbenzene, enters the surfactant assembly (micelle) = bigger pores



Post synthetic modification - after a material has been made the pore size can be reduced by modifying the interior surface = smaller pores



Silylation of hydroxyl groups in MCM-41 by Me<sub>3</sub>SiCl reduces the effective pore size

# **Template Removal**



25

#### **TEM** micrograph of hexagonal molecular sieve







#### **XRD of Lamellar MCM-50**

Only (00I) diffractions observed





Gas Adsorption Isotherms (N<sub>2</sub> at 77 K)



### Characterization of Mesoporous Materials ads.-des. N<sub>2</sub> at 77 K



MCM-41 Pore size 3.4 nm, no Kelvin capillary condensation below 3.6–3.8 nm - no hysteresis, sharp inc-decr at B



SBA-15 ( $\Box$  = ads.,  $\blacksquare$  = des.) 6.5 nm Kelvin capillary cond. - hysteresis SBA-16 (O = ads.,  $\bigcirc$  = des.) spherical 30 pores 6 nm with windows 4 nm

### **Mesoporous Platinum Metal**

H<sub>2</sub>[PtCl<sub>6</sub>] or (NH<sub>4</sub>)<sub>2</sub>[PtCl<sub>6</sub>] C<sub>16</sub>(EO)<sub>8</sub> Assembly of liquid crystalline phase Reductants: Fe, Zn, Hg, NH<sub>2</sub>NH<sub>2</sub> Washed with acetone, water, HCl

SEM (upper) and TEM (lower) images of mesoporous Pt metal show particles 90-500 nm in diameter and a pore diameter of 30 Å and a pore wall thickness of 30 Å





## **Chemistry inside the Pores**



# **Hard Tempalting**



- A = microwave digestion template removal
- **B** = introduction of metal salt solution
- **C** = calcination
- D = dissolution of SiO<sub>2</sub> in HF or NaOH



Cr<sub>2</sub>O<sub>3</sub> crystalline nanowires (bar = 25 nm for A, 10 nm for A1)

# **Hard Tempalting**



34