Layered Compounds

2D = Two-dimensional layers

- Graphite and Graphene and the likes
- Clay Minerals, Mica
- Layered Double Hydroxides (LDHs)
- Layered Zirconium Phosphates and Phosphonates
- Layered Metal Oxides
- Layered Metal Chalcogenides TiS₂, MoS₂, WS₂, MPS₃ (M = Ti, V, Mo, W, Mn, Fe, Co, Ni, Zn)
- Alkali Silicates and Crystalline Silicic Acids

Layered Compounds

Intralayer bonding - strong (covalent, ionic)

Interlayer bonding - weak (H-bonding, van der Waals)

Host-Guest Structures

Host dimensionality

Topotactic reactions = modifying existing solid state structures while maintaining the integrity of the overall structure

Intercalation

Intercalation Mechanisms

Exfoliation

Decrease attractive forces between layers Separate layers

Graphite

ABABAB

Hexagonal graphite = two-layer ABAB stacking sequence

Graphite C-C sp² sigma-bonding in-plane and out-of-plane p-orbital pi-bonding

The pi-type orbitals create the valence and conduction bands of graphite, very small band gap, metallic conductivity properties inplane, 10⁴ times that of out-of-plane electric conductivity

Graphite Intercalation

G (s) + K (melt or vapor) \rightarrow KC₈ (bronze)

 $\mathrm{KC}_8 \text{ (vacuum, heat)} \rightarrow \mathrm{KC}_{24} \rightarrow \mathrm{KC}_{36} \rightarrow \mathrm{KC}_{48} \rightarrow \mathrm{KC}_{60}$

KC₈ potassium graphite ordered structure Ordered K guests between the sheets of G

K nesting between parallel eclipsed hexagonal planar carbon six-rings

K to G charge transfer

Reduction of graphite sheets Electrons enter the conduction band

lonic bonding K⁺ C₈⁻

Intercalation in Li-ion Cells

Graphene

- 1962 H.-P. Boehm monolayer flakes of reduced graphene oxide
- 2004 Andre Geim and Konstantin Novoselov - Graphene produced and identified
- Exotic properties: Firm structure Inert material Hydrofobic character Electric and thermal conductivity High mobility of electrons Specific surface area (theor.): 2630 m²g⁻¹
- Application: diodes, sensors, solar cells, energy storage, composites, ...

K. Novoselov

A. Geim

Graphene Properties

High electric conductivity (metallic)

Optically transparent – 1 layer absorbs 2.3% of photons

High mechanical strength

Preparation of Graphene

Top-Down

Mechanical exfoliation of graphite - Scotch tape – layer peeling, flaking Chemical exfoliation of graphite (chemical, sonochemical)

Bottom-Up

SiC pyrolysis – epitaxial graphene layer on a SiC crystal CVD from CH_4 , CH_2CH_2 , or CH_3CH_3 on Ni (111), Cu, Pt surfaces

Scotch Tape – Layer Peeling

Mechanical exfoliation

13

Scotchi

Exfoliation

Chemical exfoliation (surfactant)

Sonochemical exfoliation

SiC Pyrolysis

- Annealing of the SiC crystal in a vacuum furnace (UHV 10⁻¹⁰ Torr)
- Sublimation of Si from the surface at 1250 1450 °C
- The formation of graphene layers by the remaining carbon atoms

CVD from CH₄ / H₂ on Metal Surfaces

(A) SEM - graphene on a Cu foil
(B) High-resolution SEM - Cu grain boundary and steps, two- and three-layer graphene flakes, and graphene wrinkles. Inset (B) TEM images of folded graphene edges 1L = one layer; 2L = two layers

(C) a SiO₂/Si substrate (D) a glass plate

Graphene Family

Graphene

Graphene oxide

Fluorographene

Graphitic Carbon Nitride C₃N₄

Phosphorene

Graphene Oxide

- More reactive than graphene
- Presence of oxygen groups: -OH, -COOH,
 =O, -O- hydrophilic character
- Electric insulator
- Specific SA (theoretically): 1700-1800 m²g⁻¹
- Hummers method

Fluorographene / Graphene Fluoride

A puckered cyclohexane-ring Chair conformation Each carbon bears a fluorine alternately above and below the ring

- Monolayer of graphite fluoride (CF)
 - Synthesis:
 - Graphene + XeF₂ (70 °C)
 - Mechanical exfoliation of carbon monofluoride (CF)_n
 - Liquid-phase exfoliation of graphite fluoride with sulfolane
 - High-quality insulator, resistivity > $10^{12} \Omega$, an optical gap = 3 eV
 - Mechanical strength a Young's modulus = 100 N m⁻¹
 - Inert and stable up to 400 °C in air, similar to Teflon

Graphitic Carbon Nitride

Graphitic Carbon Nitride

(a) triazine and (b) tri-s-triazine (heptazine)

Phosphorene

Black phosphorus

Orthorhombic a = 3.31 Å, b = 4.38 Å, c = 10.50 Å $\alpha = \beta = \gamma = 90^{\circ}$ Space group Bmab

centrifugation

redispersion in water

N-methyl-2-pyrrolidone

Semiconductor - direct band gap bulk black P 0.3 eV monolayer phosphorene 1.5 eV

22

Phosphorene

Height-mode AFM images single-layer phosphorene ca. 0.9 nm

Zirconium Phosphates

(a) α -zirconium phosphate = Zr(HPO₄)₂.H₂O interlayer spacing 7.6 Å

(b) γ -zirconium phosphate = Zr(PO₄)(H₂PO₄)2H₂O interlayer spacing 12.2 Å

Brucite - Mg(OH)₂

Bayerite and Gibbsite - AI(OH)₃

Opposite faces of a single layer Al(OH)₃ (A and B sides, respectively)

Bayerite and Gibbsite - AI(OH)₃

Bayerite and Gibbsite phases have an identical single layer as the building block

Bayerite is stacked by AB-AB sequence HCP of oxides Gibbsite is stacked by AB-BA sequence CCP of oxides

Clay Minerals

[Si₄O₁₀]⁴⁻ tetrahedral sheet

[Al₄O₁₂]¹²⁻ dioctahedral sheet of octahedral units

[Mg₆O₁₂]¹²⁻ trioctahedral sheet of octahedral units

Montmorillonite

Phyllosilicate Minerals

Structure	Interlayer Charge	Trioctahedral (Y ²⁺)	Dioctahedral (Y ³⁺)
0	~0	Brucite	Gibbsite
то	~0	Serpentine	Kaolinite
тот	~0	Talc	Pyrophyllite
τοτ ο τοτ	~0	Chlorite	
TOT (X⁺, X²⁺, H₂O) TOT expandable clay	~0.2-0.6	Saponite (smectite)	Montmorillonite (smectite)
	~0.6-0.9	Vermiculite	
TOT (X ⁺ , X ²⁺) TOT non-expandable clay	~0.5-0.75	-	Illite
TOT X+ TOT true mica	1	Phlogopite, Biotite	Muscovite, Paragonite
TOT X ²⁺ TOT brittle mica	2	Clintonite	Margarite

T = tetrahedral sheet O = octahedral sheet

Phyllosilicate Minerals

Layered Double Hydroxides

The layered structure of LDH is closely related to brucite Mg(OH)₂

A brucite layer, Mg²⁺ ions octahedrally surrounded by six OH⁻ the octahedra share 6 edges and form an infinite two-dimensional layer the brucite-like layers stack on top of one another either rhombohedral (3R) or hexagonal (2H) sequence

Natural mineral Hydrotalcite Mg₆Al₂(OH)₁₆CO₃.4H₂O - 3R stacking

Brucite layers, Mg²⁺ substituted partially by Al³⁺ Layers have positive charge

 $[M_{1-x}^{III}M_{x}^{III}(OH)_{2}]^{x+}(A^{m-})_{x/m}]\cdot nH_{2}O$

- $x = 0.25 Mg_6Al_2(OH)_{16}CO_3$
- x = 0 Mg(OH)₂

Hydrotalcite

Hydrotalcite Mg₆Al₂(OH)₁₆CO₃.4H₂O - 3R stacking

Unit cell parameters: a = 0.305 nm c = 3 d(003) = 2.281 nm

The interlayer spacing: d(003) = 0.760 nm the spacing occupied by the anion (gallery height) = 0.280 nm a thickness of the brucite-like layer = 0.480 nm

Layered Double Hydroxides - Hydrotalcites

Brucite layers, M²⁺ substituted partially by M³⁺ Layers have positive charge

(a) $[Ca_2AI(OH)_6]_2SO_4.6H_2O$ (b) $[LiAI_2(OH)_6]CI$ (c) $[Mg_{2.25}AI_{0.75}(OH)_6]OH$

Intercalation to LDH

The intercalation of methylphosphonic acid (MPA) into Li/Al LDH

- (a) $[LiAl_2(OH)_6]Cl.H_2O$
- (b) second-stage intermediate, alternate layers occupied by CI and MPA anions
- (c) first-stage product with all interlayer regions occupied by MPA

The Anionic Exchange Capacity (AEC)

36

LDH Composite Structures

Li Intercalation Compounds

Li Intercalation Compounds

x Li + TiS₂ \rightarrow Li_xTiS₂

Li Intercalation Compounds

40

Molybdenum Disulfide (MoS₂)

Mineral molybdenite

Hydrodesulfurization catalyst

at edges

Lubricant

41

Polymorphs of MoS₂

MoS₆ trigonal prismatic

MoS₆ octahedral

Polymorphs of MoS₂

2H, 3R - MoS₆ trigonal prismatic

1T - MoS₆ octahedral

Digit = number of monolayers in the unit cell Letters: T = trigonal, H = hexagonal, R = rhombohedral

43

Monolayer of Molybdenum Disulfide

Monolayer of Molybdenum Disulfide

 MoS_2 nanosheets - all sulfur atoms exposed on surfaces S = a soft Lewis base - a high affinity for heavy metal ions (e.g., Hg^{2+} and Ag^+) = soft Lewis acids

MoS₂ nanosheets

- high adsorption capacity abundant sulfur adsorption sites
- fast kinetics easy access to adsorption sites

Synthesis of Molybdenum Disulfide

b Chemical vapour deposition

c Metal-organic chemical vapour deposition

Nature Reviews | Materials

Nature Reviews Materials volume 2, Article number: 17033 (2017)

3D Intercalation Compounds

Tungsten trioxide WO₃

Structure = WO_6 octahedra joined at their corners = ReO_3 = the perovskite structure of $CaTiO_3$ with all the calcium sites vacant

 $Zn + 2 HCI \rightarrow 2 H + ZnCl_2$

```
WO_3 + x H \rightarrow H_x WO_3
```


The color and conductivity changes are due to the intercalation of protons into the cavities in the WO_3 structure, and the donation of their electrons to the conduction band of the WO_3 matrix

The material behaves like a metal, with both its conductivity and color being derived from free electron behavior

The coloration reaction used in electrochromic displays for sun glasses, rear view $_{\rm 47}$ mirrors in cars

OD Intercalation Compounds

Κ

 $C_{60} = FCC$

Octahedral voids (N) Tetrahedral voids (2N)

